Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 646, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890343

ABSTRACT

Numerous studies have explored the biomechanics and energetics of human walking, offering valuable insights into how we walk. However, prior studies focused on changing external factors (e.g., walking speed) and examined group averages and trends rather than individual adaptations in the presence of internal constraints (e.g., injury-related muscle weakness). To address this gap, this paper presents an open dataset of human walking biomechanics and energetics collected from 21 neurotypical young adults. To investigate the effects of internal constraints (reduced joint range of motion), the participants are both the control group (free walking) and the intervention group (constrained walking - left knee fully extended using a passive orthosis). Each subject walked on a dual-belt treadmill at three speeds (0.4, 0.8, and 1.1 m/s) and five step frequencies ( - 10% to 20% of their preferred frequency) for a total of 30 test conditions. The dataset includes raw and segmented data featuring ground reaction forces, joint motion, muscle activity, and metabolic data. Additionally, a sample code is provided for basic data manipulation and visualisation.


Subject(s)
Walking , Adult , Humans , Male , Young Adult , Biomechanical Phenomena , Gait , Range of Motion, Articular , Female
2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941249

ABSTRACT

Assisting persons during physical therapy or augmenting their performance often requires precise delivery of an intervention. Robotic devices are perfectly placed to do so, but their intervention highly depends on the physical human-robot connection. The inherent compliance in the connection leads to delays and losses in bi-directional power transmission and can lead to human-robot joint axes misalignment. This is often neglected in the literature by assuming a rigid connection and has a negative impact on the intervention's effectiveness and robustness. This paper presents the preliminary results of a study that aims to close that gap. The study investigates what model forms and parameters best capture human-robot connection dynamics across different persons, connection designs (cuffs), and cuff strapping pressures. The results show that the linear spring-damper model is the best compromise, but its parameters must be adjusted for each individual and different conditions separately.


Subject(s)
Robotics , Humans , Pressure , Physical Examination
3.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Article in English | MEDLINE | ID: mdl-36176172

ABSTRACT

This paper analyses joint-space walking mechanisms and redundancies in delivering functional gait outcomes. Multiple biomechanical measures are analysed for two healthy male adults who participated in a multi-factorial study and walked during three sessions. Both participants employed varying intra- and inter-personal compensatory strategies (e.g., vaulting, hip hiking) across walking conditions and exhibited notable gait pattern alterations while keeping task-space (functional) gait parameters invariant. They also preferred various levels of asymmetric step length but kept their symmetric step time consistent and cadence-invariant during free walking. The results demonstrate the importance of an individualised approach and the need for a paradigm shift from functional (task-space) to joint-space gait analysis in attending to (a)typical gaits and delivering human-centred human-robot interaction.


Subject(s)
Ankle Joint , Knee Joint , Adult , Biomechanical Phenomena , Gait , Humans , Male , Walking
4.
IEEE Trans Biomed Eng ; 69(3): 1141-1150, 2022 03.
Article in English | MEDLINE | ID: mdl-34559629

ABSTRACT

OBJECTIVE: This paper aims to analyse the human musculoskeletal and energetic adaptation mechanisms when physically interacting with a unilateral knee orthosis during treadmill walking. METHODS: Test subjects participated in two walking trials, whereby the orthosis was controlled to deliver five predefined torque profiles of different duration (as % of a gait cycle). The adaptations to assistive torques of different duration were analysed in terms of gait parameters, metabolic effort, and muscle activity. RESULTS: Orthotic assistance's kinematic effects remain local to the assisted leg and joint, unlike the muscles spanning the knee joint, which engage in a balancing-out action to retain stability. Duration of assistive torque significantly affects only the timing of the knee joint's peak flexion angle in the stance phase, while the observed joint kinematics and muscle activity demonstrate different recovery times upon changing robotic support (washout effects). CONCLUSION: Human body adaptations to external robotic knee joint assistance during walking take place on multiple levels and to a different extent in a joint effort to keep the gait stable. SIGNIFICANCE: This paper provides important insights into the human body's multiple adaptation mechanisms in the presence of external robotic assistance.


Subject(s)
Robotic Surgical Procedures , Biomechanical Phenomena , Gait/physiology , Humans , Knee , Knee Joint , Walking/physiology
5.
J Neuroeng Rehabil ; 17(1): 98, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680539

ABSTRACT

BACKGROUND: In the last decades, several powered ankle-foot orthoses have been developed to assist the ankle joint of their users during walking. Recent studies have shown that the effects of the assistance provided by powered ankle-foot orthoses depend on the assistive profile. In compliant actuators, the stiffness level influences the actuator's performance. However, the effects of this parameter on the users has not been yet evaluated. The goal of this study is to assess the effects of the assistance provided by a variable stiffness ankle actuator on healthy young users. More specifically, the effect of different onset times of the push-off torque and different actuator's stiffness levels has been investigated. METHODS: Eight healthy subjects walked with a unilateral powered ankle-foot orthosis in several assisted walking trials. The powered orthosis was actuated in the sagittal plane by a variable stiffness actuator. During the assisted walking trials, three different onset times of the push-off assistance and three different actuator's stiffness levels were used. The metabolic cost of walking, lower limb muscles activation, joint kinematics, and gait parameters measured during different assisted walking trials were compared to the ones measured during normal walking and walking with the powered orthosis not providing assistance. RESULTS: This study found trends for more compliant settings of the ankle actuator resulting in bigger reductions of the metabolic cost of walking and soleus muscle activation in the stance phase during assisted walking as compared to the unassisted walking trial. In addition to this, the study found that, among the tested onset times, the earlier ones showed a trend for bigger reductions of the activation of the soleus muscle during stance, while the later ones led to a bigger reduction in the metabolic cost of walking in the assisted walking trials as compared to the unassisted condition. CONCLUSIONS: This study presents a first attempt to show that, together with the assistive torque profile, also the stiffness level of a compliant ankle actuator can influence the assistive performance of a powered ankle-foot orthosis.


Subject(s)
Biomechanical Phenomena/physiology , Exoskeleton Device , Foot Orthoses , Robotics , Walking/physiology , Adult , Ankle Joint , Humans , Male
6.
J Neuroeng Rehabil ; 15(1): 86, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30285869

ABSTRACT

In the last two decades, numerous powered ankle-foot orthoses have been developed. Despite similar designs and control strategies being shared by some of these devices, their performance in terms of achieving a comparable goal varies. It has been shown that the effect of powered ankle-foot orthoses on healthy users is altered by some factors of the testing protocol. This paper provides an overview of the effect of powered walking on healthy and weakened users. It identifies a set of key factors influencing the performance of powered ankle-foot orthoses, and it presents the effects of these factors on healthy subjects, highlighting the similarities and differences of the results obtained in different works. Furthermore, the outcomes of studies performed on elderly and impaired subjects walking with powered ankle-foot orthoses are compared, to outline the effects of powered walking on these users. This article shows that several factors mutually influence the performance of powered ankle-foot orthoses on their users and, for this reason, the determination of their effects on the user is not straightforward. One of the key factors is the adaptation of users to provided assistance. This factor is very important for the assessment of the effects of powered ankle-foot orthoses on users, however, it is not always reported by studies. Moreover, future works should report, together with the results, the list of influencing factors used in the protocol, to facilitate the comparison of the obtained results. This article also underlines the need for a standardized method to benchmark the actuators of powered ankle-foot orthoses, which would ease the comparison of results between the performed studies. In this paper, the lack of studies on elderly and impaired subjects is highlighted. The insufficiency of these studies makes it difficult to assess the effects of powered ankle-foot orthoses on these users.To summarize, this article provides a detailed overview of the work performed on powered ankle-foot orthoses, presenting and analyzing the results obtained, but also emphasizing topics on which more research is still required.


Subject(s)
Equipment Design , Foot Orthoses , Gait/physiology , Walking/physiology , Ankle Joint , Foot , Humans
7.
IEEE Int Conf Rehabil Robot ; 2017: 283-288, 2017 07.
Article in English | MEDLINE | ID: mdl-28813832

ABSTRACT

The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.


Subject(s)
Ankle/physiology , Equipment Design/methods , Foot Orthoses , Gait/physiology , Robotics/instrumentation , Ankle Joint/physiology , Humans , Torque
8.
IEEE Int Conf Rehabil Robot ; 2017: 1666-1671, 2017 07.
Article in English | MEDLINE | ID: mdl-28814059

ABSTRACT

This paper presents design of a novel modular lower-limb gait exoskeleton built within the FP7 BioMot project. Exoskeleton employs a variable stiffness actuator in all 6 joints, a directional-flexibility structure and a novel physical humanrobot interfacing, which allows it to deliver the required output while minimally constraining user's gait by providing passive degrees of freedom. Due to modularity, the exoskeleton can be used as a full lower-limb orthosis, a single-joint orthosis in any of the three joints, and a two-joint orthosis in a combination of any of the two joints. By employing a simple torque control strategy, the exoskeleton can be used to deliver user-specific assistance, both in gait rehabilitation and in assisting people suffering musculoskeletal impairments. The result of the presented BioMot efforts is a low-footprint exoskeleton with powerful compliant actuators, simple, yet effective torque controller and easily adjustable flexible structure.


Subject(s)
Exoskeleton Device , Man-Machine Systems , Wearable Electronic Devices , Equipment Design , Humans , Lower Extremity/physiology , Orthotic Devices , Torque
SELECTION OF CITATIONS
SEARCH DETAIL