Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967302

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , B-Lymphocytes , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , Disease Models, Animal , Mice, Transgenic , Male , Female , Mice, Inbred C57BL , Immunomodulation , Middle Aged
2.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892247

ABSTRACT

Yeast expression of human G-protein-coupled receptors (GPCRs) can be used as a biosensor platform for the detection of pharmaceuticals. Cannabinoid receptor type 1 (CB1R) is of particular interest, given the cornucopia of natural and synthetic cannabinoids being explored as therapeutics. We show for the first time that engineering the N-terminus of CB1R allows for efficient signal transduction in yeast, and that engineering the sterol composition of the yeast membrane modulates its performance. Using an engineered cannabinoid biosensor, we demonstrate that large libraries of synthetic cannabinoids and terpenes can be quickly screened to elucidate known and novel structure-activity relationships. The biosensor strains offer a ready platform for evaluating the activity of new synthetic cannabinoids, monitoring drugs of abuse, and developing therapeutic molecules.


Subject(s)
Biosensing Techniques , Cannabinoids , Receptor, Cannabinoid, CB1 , Saccharomyces cerevisiae , Biosensing Techniques/methods , Humans , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Structure-Activity Relationship , Signal Transduction/drug effects
3.
EJHaem ; 5(3): 573-577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895092

ABSTRACT

Myeloproliferative neoplasms (MPNs) are associated with immune dysregulation and increased susceptibility to infection, emphasizing the importance of vaccination for patients. This pilot study evaluated immune responses to influenza vaccination in MPN patients compared with healthy donors using mass cytometry and serology. We observed diminished CXCR5+ B-cell, CXCR3+ T-cell, activated CD127+ memory T-cell subsets, and a trend toward lower hemagglutinin inhibition titer in MPN patients. These results indicate that patients with MPN exhibit distinct responses to influenza vaccination suggestive of impaired migration to lymphoid organs and T-cell maturation which may impact the development of protective immunity.

4.
J Biol Chem ; 300(5): 107248, 2024 May.
Article in English | MEDLINE | ID: mdl-38556082

ABSTRACT

P2X receptors are a family of ligand gated ion channels found in a range of eukaryotic species including humans but are not naturally present in the yeast Saccharomyces cerevisiae. We demonstrate the first recombinant expression and functional gating of the P2X2 receptor in baker's yeast. We leverage the yeast host for facile genetic screens of mutant P2X2 by performing site saturation mutagenesis at residues of interest, including SNPs implicated in deafness and at residues involved in native binding. Deep mutational analysis and rounds of genetic engineering yield mutant P2X2 F303Y A304W, which has altered ligand selectivity toward the ATP analog AMP-PNP. The F303Y A304W variant shows over 100-fold increased intracellular calcium amplitudes with AMP-PNP compared to the WT receptor and has a much lower desensitization rate. Since AMP-PNP does not naturally activate P2X receptors, the F303Y A304W P2X2 may be a starting point for downstream applications in chemogenetic cellular control. Interestingly, the A304W mutation selectively destabilizes the desensitized state, which may provide a mechanistic basis for receptor opening with suboptimal agonists. The yeast system represents an inexpensive, scalable platform for ion channel characterization and engineering by circumventing the more expensive and time-consuming methodologies involving mammalian hosts.


Subject(s)
Receptors, Purinergic P2X2 , Saccharomyces cerevisiae , Humans , Amino Acid Substitution , Ligands , Protein Engineering/methods , Receptors, Purinergic P2X2/metabolism , Receptors, Purinergic P2X2/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Models, Molecular , Protein Structure, Tertiary , Protein Structure, Quaternary , Structural Homology, Protein , Mutation
5.
Sci Rep ; 12(1): 17684, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271270

ABSTRACT

In vitro whole blood infection models are used for elucidating the immune response to Mycobacterium tuberculosis (Mtb). They exhibit commonalities but also differences, to the in vivo blood transcriptional response during natural human Mtb disease. Here, we present a description of concordant and discordant components of the immune response in blood, quantified through transcriptional profiling in an in vitro whole blood infection model compared to whole blood from patients with tuberculosis disease. We identified concordantly and discordantly expressed gene modules and performed in silico cell deconvolution. A high degree of concordance of gene expression between both adult and paediatric in vivo-in vitro tuberculosis infection was identified. Concordance in paediatric in vivo vs in vitro comparison is largely characterised by immune suppression, while in adults the comparison is marked by concordant immune activation, particularly that of inflammation, chemokine, and interferon signalling. Discordance between in vitro and in vivo increases over time and is driven by T-cell regulation and monocyte-related gene expression, likely due to apoptotic depletion of monocytes and increasing relative fraction of longer-lived cell types, such as T and B cells. Our approach facilitates a more informed use of the whole blood in vitro model, while also accounting for its limitations.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adult , Humans , Child , Transcriptome , RNA , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Interferons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...