Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112888, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37527039

ABSTRACT

Evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has led to the emergence of sublineages with different patterns of neutralizing antibody evasion. We report that Omicron BA.4/BA.5 breakthrough infection of individuals immunized with SARS-CoV-2 wild-type-strain-based mRNA vaccines results in a boost of Omicron BA.4.6, BF.7, BQ.1.1, and BA.2.75 neutralization but does not efficiently boost BA.2.75.2, XBB, or XBB.1.5 neutralization. In silico analyses showed that the Omicron spike glycoprotein lost most neutralizing B cell epitopes, especially in sublineages BA.2.75.2, XBB, and XBB.1.5. In contrast, T cell epitopes are conserved across variants including XBB.1.5. T cell responses of mRNA-vaccinated, SARS-CoV-2-naive individuals against the wild-type strain, Omicron BA.1, and BA.4/BA.5 were comparable, suggesting that T cell immunity against recent sublineages including XBB.1.5 may remain largely unaffected. While some Omicron sublineages effectively evade B cell immunity, spike-protein-specific T cell immunity, due to the nature of polymorphic cell-mediated immune responses, may continue to contribute to prevention/limitation of severe COVID-19 manifestation.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
2.
Sci Immunol ; 7(78): eade9888, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36378074

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30-amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice after SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. Whereas the Omicron BA.1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice, primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that, when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth and that the bivalent version also has the potential to confer protection to individuals with no preexisting immunity against SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Breakthrough Infections , RNA, Messenger
3.
Sci Immunol ; 7(77): eade2283, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36125366

ABSTRACT

BNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum-neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 variants of concern (VOCs) yet less against the highly contagious Omicron sublineages BA.4 and BA.5 that have displaced previous variants. Because the latter sublineages are derived from Omicron BA.2, we characterized serum-neutralizing activity of COVID-19 mRNA vaccine triple-immunized individuals who experienced BA.2 breakthrough infection. We demonstrate that sera of these individuals have broadly neutralizing activity against previous VOCs and all tested Omicron sublineages, including BA.2-derived variants BA.2.12.1 and BA.4/BA.5. Furthermore, applying antibody depletion, we showed that neutralization of BA.2 and BA.4/BA.5 sublineages by BA.2 convalescent sera is driven to a considerable extent by antibodies targeting the N-terminal domain (NTD) of the spike glycoprotein. However, neutralization by Omicron BA.1 convalescent sera depends exclusively on antibodies targeting the receptor binding domain (RBD). These findings suggest that exposure to Omicron BA.2, in contrast to BA.1 spike glycoprotein, triggers substantial NTD-specific recall responses in vaccinated individuals and thereby enhances the neutralization of BA.4/BA.5 sublineages. Given the current epidemiology with a predominance of BA.2-derived sublineages such as BA.4/BA.5 and rapidly ongoing evolution, these findings helped to inform development of our Omicron BA.4/BA.5-adapted vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19 Vaccines , BNT162 Vaccine , COVID-19 Serotherapy , mRNA Vaccines
4.
Sci Immunol ; 7(75): eabq2427, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35653438

ABSTRACT

Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.


Subject(s)
COVID-19 , Viral Envelope Proteins , BNT162 Vaccine , Epitopes , Humans , Membrane Glycoproteins , Memory B Cells , Neutralization Tests , SARS-CoV-2
5.
Science ; 375(6581): 678-680, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35040667

ABSTRACT

The globally circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern Omicron (B.1.1.529) has a large number of mutations, especially in the spike protein, indicating that recognition by neutralizing antibodies may be compromised. We tested Wuhan (Wuhan-Hu-1 reference strain), Beta (B.1.351), Delta (B.1.617.2), or Omicron pseudoviruses with sera of 51 participants who received two or three doses of the messenger RNA (mRNA)-based COVID-19 vaccine BNT162b2. After two doses, Omicron-neutralizing titers were reduced >22-fold compared with Wuhan-neutralizing titers. One month after the third vaccine dose, Omicron-neutralizing titers were increased 23-fold relative to their levels after two doses and were similar to levels of Wuhan-neutralizing titers after two doses. The requirement of a third vaccine dose to effectively neutralize Omicron was confirmed with sera from a subset of participants using live SARS-CoV-2. These data suggest that three doses of the mRNA vaccine BNT162b2 may protect against Omicron-mediated COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Humans , Immunization Schedule , Immunization, Secondary , Middle Aged , Mutation , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Vaccination , Young Adult
6.
Nature ; 580(7804): 524-529, 2020 04.
Article in English | MEDLINE | ID: mdl-32322056

ABSTRACT

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.


Subject(s)
Carcinogenesis , Colorectal Neoplasms/pathology , Intestines/pathology , Mesoderm/pathology , Neoplastic Stem Cells/pathology , Paracrine Communication , Stem Cell Niche , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antigens, Ly/metabolism , Arachidonic Acid/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Colorectal Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Membrane Proteins/metabolism , Mesoderm/metabolism , Mice , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Organoids/pathology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Single-Cell Analysis , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...