Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 638452, 2021.
Article in English | MEDLINE | ID: mdl-34149745

ABSTRACT

To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1-4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1-4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Müncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe.

2.
Agron Sustain Dev ; 38(6): 63, 2018.
Article in English | MEDLINE | ID: mdl-30873223

ABSTRACT

Grain legumes produce high-quality protein for food and feed, and potentially contribute to sustainable cropping systems, but they are grown on only 1.5% of European arable land. Low temporal yield stability is one of the reasons held responsible for the low proportion of grain legumes, without sufficient quantitative evidence. The objective of this study was to compare the yield stability of grain legumes with other crop species in a northern European context and accounting for the effects of scale in the analysis and the data. To avoid aggregation biases in the yield data, we used data from long-term field experiments. The experiments included grain legumes (lupin, field pea, and faba bean), other broad-leaved crops, spring, and winter cereals. Experiments were conducted in the UK, Sweden, and Germany. To compare yield stability between grain legumes and other crops, we used a scale-adjusted yield stability indicator that accounts for the yield differences between crops following Taylor's Power Law. Here, we show that temporal yield instability of grain legumes (30%) was higher than that of autumn-sown cereals (19%), but lower than that of other spring-sown broad-leaved crops (35%), and only slightly greater than spring-sown cereals (27%). With the scale-adjusted yield stability indicator, we estimated 21% higher yield stability for grain legumes compared to a standard stability measure. These novel findings demonstrate that grain legume yields are as reliable as those of other spring-sown crops in major production systems of northern Europe, which could influence the current negative perception on grain legume cultivation. Initiatives are still needed to improve the crops agronomy to provide higher and more stable yields in future.

3.
Front Plant Sci ; 7: 1700, 2016.
Article in English | MEDLINE | ID: mdl-27917178

ABSTRACT

The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha-1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

4.
Front Plant Sci ; 7: 669, 2016.
Article in English | MEDLINE | ID: mdl-27242870

ABSTRACT

Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

5.
J Environ Manage ; 114: 404-13, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23164542

ABSTRACT

This paper presents a whole farm bio-economic modelling approach for the assessment and optimisation of amphibian conservation conditions applied at the example of a large scale organic farm in North-Eastern Germany. The assessment focuses mainly on the habitat quality as affected by conservation measures such as through specific adapted crop production activities (CPA) and in-field buffer strips for the European tree frog (Hyla arborea), considering also interrelations with other amphibian species (i.e. common spadefoot toad (Pelobates fuscus), fire-bellied toad (Bombina bombina)). The aim of the approach is to understand, analyse and optimize the relationships between the ecological and economic performance of an organic farming system, based on the expectation that amphibians are differently impacted by different CPAs. The modelling system consists of a set of different sub-models that generate a farm model on the basis of environmentally evaluated CPAs. A crop-rotation sub-model provides a set of agronomically sustainable crop rotations that ensures overall sufficient nitrogen supply and controls weed, pest and disease infestations. An economic sub-model calculates the gross margins for each possible CPA including costs of inputs such as labour and machinery. The conservation effects of the CPAs are assessed with an ecological sub-model evaluates the potential negative or positive effect that each work step of a CPA has on amphibians. A mathematical programming sub-model calculates the optimal farm organization taking into account the limited factors of the farm (e.g. labour, land) as well as ecological improvements. In sequential model runs, the habitat quality is to be improved by the model, while the highest possible gross margin is still to be achieved. The results indicate that the model can be used to show the scope of action that a farmer has to improve habitat quality by reducing damage to amphibian population on its land during agricultural activities. Thereby, depending on the level of habitat quality that is aimed at, different measures may provide the most efficient solution. Lower levels of conservation can be achieved with low-cost adapted CPAs, such as an increased cutting height, reduced sowing density and grubbing instead of ploughing. Higher levels of conservation require e.g. grassland-like managed buffer strips around ponds in sensible areas, which incur much higher on-farm conservation costs.


Subject(s)
Anura , Conservation of Natural Resources , Models, Biological , Models, Economic , Organic Agriculture , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...