Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 11(18): 3087-3091, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30009517

ABSTRACT

Cobalt polypyridyls are highly efficient water-stable molecular catalysts for hydrogen evolution. The catalytic mechanism explaining their activity is under debate and the main question is the nature of the involvement of pyridyls in the proton transfer: the pentapyridyl ligand, acting as a pentadentate ligand, can provide stability to the catalyst or one of the pyridines can be involved in the proton transfer. Time-resolved Co K-edge X-ray absorption spectroscopy in the microsecond time range indicates that, for the [CoII (aPPy)] catalyst (aPPy=di([2,2'-bipyridin]-6-yl)(pyridin-2-yl)methanol), the pendant pyridine dissociates from the cobalt in the intermediate CoI state. This opens the possibility for pyridinium to act as an intramolecular proton donor. In the resting state, the catalyst returns to the original six-coordinate high-spin CoII state with a pentapyridyl and one water molecule coordinating to the metal center. Such a bifunctional role of the polypyridyl ligands can be exploited during further optimization of the catalyst.

2.
Inorg Chem ; 57(3): 1651-1655, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29368926

ABSTRACT

Cobalt complexes are well-known catalysts for photocatalytic proton reduction in water. Macrocyclic tetrapyridyl ligands (pyrphyrins) and their CoII complexes emerged in this context as a highly efficient class of H2 evolution catalysts. On the basis of this framework, a new macrocyclic CoII complex consisting of two keto-bridged bipyridyl units (Co diketo-pyrphyrin) is presented. The complex is synthesized along a convenient route, is well soluble in water, and shows high activity as a water reduction catalyst (WRC). In an aqueous system containing [Ru(bpy)3]Cl2 as a photosensitizer and NaAscO as a sacrificial electron donor, turnover numbers (TONs) of 2500 H2/Co were achieved. Catalysis is terminated by a limited electron supply and decomposition of the photosensitizer but not of the WRC, highlighting the distinct stability of Co diketo-pyrphyrin.

3.
ChemSusChem ; 10(22): 4570-4580, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29052339

ABSTRACT

A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl-bipyridyl complex [CoII Br(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII -H, is found upon reduction of CoII , in line with a pKa (CoIII -H) of approximately 7.25. Subsequent reduction (-0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa (CoIII -H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.


Subject(s)
Cobalt/chemistry , Hydrogen/chemistry , Pyridines/chemistry , Water/chemistry , 2,2'-Dipyridyl , Catalysis , Coordination Complexes/chemistry , Structure-Activity Relationship
4.
ChemSusChem ; 10(22): 4517-4525, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29068156

ABSTRACT

Ruthenium complexes containing the pentapyridyl ligand 6,6''-(methoxy(pyridin-2-yl)methylene)di-2,2'-bipyridine (L-OMe) of general formula trans-[RuII (X)(L-OMe-κ-N5 )]n+ (X=Cl, n=1, trans-1+ ; X=H2 O, n=2, trans-22+ ) have been isolated and characterized in solution (by NMR and UV/Vis spectroscopy) and in the solid state by XRD. Both complexes undergo a series of substitution reactions at oxidation state RuII and RuIII when dissolved in aqueous triflic acid-trifluoroethanol solutions as monitored by UV/Vis spectroscopy, and the corresponding rate constants were determined. In particular, aqueous solutions of the RuIII -Cl complex trans-[RuIII (Cl)(L-OMe-κ-N5 )]2+ (trans-12+ ) generates a family of Ru aquo complexes, namely trans-[RuIII (H2 O)(L-OMe-κ-N5 )]3+ (trans-23+ ), [RuIII (H2 O)2 (L-OMe-κ-N4 )]3+ (trans-33+ ), and [RuIII (Cl)(H2 O)(L-OMe-κ-N4 )]2+ (trans-42+ ). Although complex trans-42+ is a powerful water oxidation catalyst, complex trans-23+ has only a moderate activity and trans-33+ shows no activity. A parallel study with related complexes containing the methyl-substituted ligand 6,6''-(1-pyridin-2-yl)ethane-1,1-diyl)di-2,2'-bipyridine (L-Me) was carried out. The behavior of all of these catalysts has been rationalized based on substitution kinetics, oxygen evolution kinetics, electrochemical properties, and density functional theory calculations. The best catalyst, trans-42+ , reaches turnover frequencies of 0.71 s-1 using CeIV as a sacrificial oxidant, with oxidative efficiencies above 95 %.

5.
Angew Chem Int Ed Engl ; 55(32): 9402-6, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27355200

ABSTRACT

Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2 (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation.

6.
Chemphyschem ; 17(9): 1321-8, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26752324

ABSTRACT

We explore the potential of various hydroquinone/quinone redox couples as electron relays in a homogenous water reduction system between a Re-based photosensitizer and a sacrificial electron donor [tris-(2-carboxyethyl)-phosphine, TCEP]. By using transient IR spectroscopy, flash photolysis as well as stopped-flow techniques covering timescales from picoseconds to 100 ms, we determine quenching rates and cage escape yields, the kinetics of the follow-up chemistry of the semiquinone, the recombination rates, as well as the re-reduction rates by TCEP. The overall quantum yield of hydrogen production is low, and we show that the limiting factors are the small cage escape yields and, more importantly, the slow regeneration rate by TCEP in comparison to the undesired charge recombination with the reduced water reduction catalyst.


Subject(s)
Photosynthesis , Quinones/chemistry , Electrons , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
7.
Inorg Chem ; 54(2): 646-57, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25539163

ABSTRACT

The mechanism of photocatalytic hydrogen production was studied with a three-component system consisting of fac-[Re(py)(CO)3bipy](+) (py = pyridine, bipy = 2,2'-bipyridine) as photosensitizer, [Co(TPY-OH)(OH2)](2+) (TPY-OH = 2-bis(2-pyridyl)(hydroxy)methyl-6-pyridylpyridine), a polypyridyl-based cobalt complex, as water reduction catalyst (WRC), and triethanolamine (TEOA) as sacrificial electron donor in aqueous solution. A detailed mechanistic picture is provided, which covers all processes from excited state quenching on the time scale of a few nanoseconds to hydrogen release taking place between seconds and minutes at moderately basic reaction conditions. Altogether these processes span 9 orders of magnitude in time. The following reaction sequence was found to be the dominant pathway for hydrogen generation: After reductive quenching by TEOA, the reduced photosensitizer (PS) transfers an electron to the Co(II)-WRC. Protonation of Co(I) yields Co(III)H which is reduced in the presence of excess Co(I). Co(II)H releases hydrogen after a second protonation step, which is detected time-resolved by a clark-type hydrogen electrode. Aside from these productive steps, the role of side and back reactions involving TEOA-derived species is assessed, which is particularly relevant in laser flash photolysis measurements with significantly larger transient concentrations of reactive species as compared to continuous photolysis experiments. Most notable is an equilibrium reaction involving Co(I), which is explained by a nucleophilic addition of Co(I) to the oxidation product of TEOA, an electrophilic iminium ion. Quantum chemical calculations indicate that the reaction is energetically feasible. The calculated spectra of the adduct are consistent with the spectroscopic observations.

8.
Chem Commun (Camb) ; 50(51): 6737-9, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24826904

ABSTRACT

Ascorbate acts as a reversible electron shuttle between tris(2-carboxyethyl) phosphine (TCEP) and Re(I) or Ru(II) photosensitizers. Oxidized ascorbate is recycled up to 50 times by the TCEP → TCEP[double bond, length as m-dash]O redox process which enables 30 000 TONs per WRC in photocatalytic hydrogen production, thus exceeding the performance with pure ascorbate by far.

9.
Inorg Chem ; 52(10): 6055-61, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23641941

ABSTRACT

The synthesis of the two penta-pyridyl type ligands pyridine-2,6-diylbis(dipyridin-2-ylmethanol) (PPy, 1) and bis-2,2''-bipyridine-6-yl(pyridine-2-yl)methanol (aPPy, 2) is described. Both ligands coordinate rapidly to the 3d element cations Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II), thereby yielding complexes of the general composition [MBr(1)](+) and [MBr(2)](+), respectively. Further, the X-ray structures of selected complexes with ligands 1 and 2 are described. They show metal center dependent structural features and complexes with 2 exhibiting distinctly distorted octahedral geometries. Moreover, photocatalytic water reduction with [Co(II)Br(PPy)]Br (1c) and [Co(II)Br(aPPy)]Br (2c) as water reducing catalysts (WRC) was investigated. Both complexes showed catalytic activity in water when in presence of ascorbic acid as sacrificial electron donor and [Re(py)(bpy)(CO)3](+) (3) as photosensitizer (PS). Turnover numbers, TONs (H2/Co), up to 11,000 were achieved. Complex 2c was more active than 1c, whereas none of the other complexes showed any activity.


Subject(s)
Metals, Heavy/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Catalysis , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Photochemical Processes
10.
Dalton Trans ; 42(2): 334-7, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23090353

ABSTRACT

Synthesis, characterization and activity in homogeneous photocatalytic hydrogen production of a cobalt polypyridyl complex are reported. TONs up to 9000 H(2)/Co could be achieved. Immobilization of the complex on a swellable resin yielded a recyclable heterogeneous catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...