Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Cutan Pathol ; 50(6): 544-551, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36562598

ABSTRACT

INTRODUCTION: The implications of infiltrative compared to non-infiltrative growth of cutaneous basal cell carcinoma (BCC) on the tumor stroma and immune cell landscape are unknown. This is of clinical importance, because infiltrative BCCs, in contrast to other BCC subtypes, are more likely to relapse after surgery and radiotherapy. MATERIALS AND METHODS: This descriptive cross-sectional study analyzed 38 BCCs collected from 2018 to 2021. In the first cohort (n = 28), immune cells were characterized by immunohistochemistry and multiplex immunofluorescence staining for CD3, CD8, CD68, Foxp3, and α-SMA protein expression. In the second cohort (n = 10) with matched characteristics (age, sex, location, and BCC subtype), inflammatory parameters, including TGF-ß1, TGF-ß2, ACTA2, IL-10, IL-12A, and Foxp3, were quantified via RT-qPCR after isolating mRNA from BCC tissue samples and perilesional skin. RESULTS: Infiltrative BCCs showed significantly increased levels of α-SMA expression in fibroblasts (p = 0.0001) and higher levels of Foxp3+ (p = 0.0023) and CD3+ (p = 0.0443) T-cells compared to non-infiltrative BCCs. CD3+ (p = 0.0171) and regulatory T-cells (p = 0.0026) were significantly increased in α-SMA-positive tumor stroma, whereas CD8+ T-cells (p = 0.1329) and CD68+ myeloid cells (p = 0.2337) were not affected. TGF-ß1 and TGF-ß2 correlated significantly with ACTA2/α-SMA mRNA expression (p = 0.020, p = 0.005). CONCLUSION: Infiltrative growth of BCCs shows a myofibroblastic stroma differentiation and is accompanied by an immunosuppressive tumor microenvironment.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Transforming Growth Factor beta1 , Transforming Growth Factor beta2 , T-Lymphocytes, Regulatory/pathology , Cross-Sectional Studies , Myofibroblasts/pathology , Neoplasm Recurrence, Local , Carcinoma, Basal Cell/pathology , Cell Differentiation , Forkhead Transcription Factors , Tumor Microenvironment
3.
Leukemia ; 36(11): 2705-2714, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36224329

ABSTRACT

The composition of the gut microbiome influences the clinical course after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about the relevance of skin microorganisms. In a single-center, observational study, we recruited a cohort of 50 patients before undergoing conditioning treatment and took both stool and skin samples up to one year after HSCT. We could confirm intestinal dysbiosis following HSCT and report that the skin microbiome is likewise perturbed in HSCT-recipients. Overall bacterial colonization of the skin was decreased after conditioning. Particularly patients that developed acute skin graft-versus-host disease (aGVHD) presented with an overabundance of Staphylococcus spp. In addition, a loss in alpha diversity was indicative of aGVHD development already before disease onset and correlated with disease severity. Further, co-localization of CD45+ leukocytes and staphylococci was observed in the skin of aGVHD patients even before disease development and paralleled with upregulated genes required for antigen-presentation in mononuclear phagocytes. Overall, our data reveal disturbances of the skin microbiome as well as cutaneous immune response in HSCT recipients with changes associated with cutaneous aGVHD.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Immunity
4.
Ther Adv Hematol ; 12: 20406207211058333, 2021.
Article in English | MEDLINE | ID: mdl-34987741

ABSTRACT

INTRODUCTION: Treatment-refractory, acute graft-versus-host disease (GvHD) of the lower gastrointestinal tract (GI) after allogeneic hematopoietic stem cell transplantation is life threatening and lacks effective treatment options. While fecal microbiota transplantation (FMT) was shown to ameliorate GI-GvHD, its mechanisms of action and the factors influencing the treatment response in humans remain unclear.The objective of this study is to assess response to FMT treatment, factors influencing response, and to study the mucosal immune cell composition in treatment-refractory GI-GvHD. METHODS: Consecutive patients with treatment-refractory GI-GvHD were treated with up to six endoscopically applied FMTs. RESULTS: We observed the response to FMT in four out of nine patients with severe, treatment refractory GI-GvHD, associated with a significant survival benefit (p = 0.017). The concomitant use of broad-spectrum antibiotics was the main factor associated with FMT failure (p = 0.048). In addition, antibiotic administration hindered the establishment of donor microbiota after FMT. Unlike in non-responders, the microbiota characteristics (e.g. α- and ß-diversity, abundance of anaerobe butyrate-producers) in responders were more significantly similar to those of FMT donors. During active refractory GI-GvHD, an increased infiltrate of T cells, mainly Th17 and CD8+ T cells, was observed in the ileocolonic mucosa of patients, while the number of immunomodulatory cells such as regulatory T-cells and type 3 innate lymphoid cells decreased. After FMT, a change in immune cell patterns was induced, depending on the clinical response. CONCLUSION: This study increases the knowledge about the crucial effects of antibiotics in patients given FMT for treatment refractory GI-GvHD and defines the characteristic alterations of ileocolonic mucosal immune cells in this setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...