Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Allergy ; 4: 1303943, 2023.
Article in English | MEDLINE | ID: mdl-38125293

ABSTRACT

Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.

2.
Proc Natl Acad Sci U S A ; 120(46): e2303243120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37943838

ABSTRACT

Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.


Subject(s)
Ice , Water , Freezing , Temperature , Bacterial Outer Membrane Proteins/metabolism
3.
Front Allergy ; 4: 1066392, 2023.
Article in English | MEDLINE | ID: mdl-36873048

ABSTRACT

The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO-) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO- and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO--induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment.

4.
Chem Sci ; 13(17): 5014-5026, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35655890

ABSTRACT

The freezing of water into ice is a key process that is still not fully understood. It generally requires an impurity of some description to initiate the heterogeneous nucleation of the ice crystals. The molecular structure, as well as the extent of structural order within the impurity in question, both play an essential role in determining its effectiveness. However, disentangling these two contributions is a challenge for both experiments and simulations. In this work, we have systematically investigated the ice-nucleating ability of the very same compound, cholesterol, from the crystalline (and thus ordered) form to disordered self-assembled monolayers. Leveraging a combination of experiments and simulations, we identify a "sweet spot" in terms of the surface coverage of the monolayers, whereby cholesterol maximises its ability to nucleate ice (which remains inferior to that of crystalline cholesterol) by enhancing the structural order of the interfacial water molecules. These findings have practical implications for the rational design of synthetic ice-nucleating agents.

5.
Anal Bioanal Chem ; 414(15): 4457-4470, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35320366

ABSTRACT

Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen.


Subject(s)
Colorimetry , Proteins , Amino Acids/analysis , Amino Acids, Aromatic , Chromatography, Liquid/methods , Colorimetry/methods , Particulate Matter , Proteins/analysis
6.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299235

ABSTRACT

The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.


Subject(s)
Phleum/metabolism , Plant Proteins/metabolism , Rhinitis, Allergic, Seasonal/metabolism , Allergens/chemistry , Kinetics , Nitrates/metabolism , Nitrogen Dioxide/chemistry , Nitrogen Oxides , Oxidants , Ozone/chemistry , Peroxynitrous Acid/chemistry , Plant Proteins/analysis , Poaceae/metabolism , Pollen/metabolism , Proteins/chemistry , Rhinitis, Allergic, Seasonal/physiopathology
7.
PLoS One ; 7(5): e37338, 2012.
Article in English | MEDLINE | ID: mdl-22649519

ABSTRACT

Analysis of the paired i.e. matching TCR α- and ß-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and ß-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV) and multiple sclerosis (MS). In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and ß-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+) T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+) T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vß and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αß-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αß-T cell of choice that can be used for investigating their specificity.


Subject(s)
Genes, T-Cell Receptor alpha/genetics , Genes, T-Cell Receptor beta/genetics , Multiplex Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , T-Lymphocytes/metabolism , Antigen-Presenting Cells/immunology , DNA Primers/genetics , Flow Cytometry , Humans , Multiple Sclerosis/immunology , Psoriasis/immunology , Skin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...