Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
BMC Vet Res ; 19(1): 206, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845727

ABSTRACT

BACKGROUND: Curcumin is a biomolecule that can be extracted from the Curcuma longa that has been shown to have the potential to aid skin wound healing. It has been studied for its anti-inflammatory and antioxidant properties, which may help to reduce swelling and promote tissue repair. However, curcumin has low solubility in water, which can limit its absorption and bioavailability. Encapsulating it in lipid nanoparticles may help to increase its absorption, leading to improved bioavailability. METHODS: Curcumin-loaded nanostructure lipid nanocarriers (CURC-NLCs) were prepared and characterized. Also, the phenolic, flavonoid contents, antioxidant and antimicrobial efficacy against gram-positive and gram-negative bacteria were investigated. Furthermore, in vivo rabbit animal model was used to test its regenerative capacity and wound-healing efficiency. RESULTS: The CURC-NLCs significantly increased the content of phenolic and flavonoid compounds compared to curcumin, resulting in a dramatic increase in antioxidant activity. CURC-NLCs also showed a potent inhibitory effect on Gram-positive, Gram-negative, and fungi, two times higher than curcumin. CURC-NLCs showed a higher potential to fasten the wound healing of full-thickness skin injuries as it resulted in 1.15- and 1.9-fold higher wound closure at the first week of injury compared to curcumin and control, respectively (p < 0.0001). CONCLUSION: These results suggest that CURC-NLCs have an excellent potential to promote skin regeneration, which could be attributed to its antioxidant and broad-spectrum antimicrobial effect.


Subject(s)
Anti-Infective Agents , Curcumin , Nanostructures , Animals , Rabbits , Curcumin/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanostructures/chemistry , Wound Healing , Anti-Infective Agents/pharmacology , Lipids/pharmacology , Flavonoids/pharmacology
2.
Int J Biol Macromol ; 239: 124237, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37003382

ABSTRACT

Essential oils of Mentha piperita, Punica granatum, Thymus vulgaris and Citrus limon in olive oil as a carrier were mixed with biopolymer chitosan to prepare nanoemulsions. The formulations were prepared using the following ratios: 0.5:0.5:4, 1:1:4, and 2:3:4 of chitosan: essential oil: olive oil, respectively, representing 12 formulations based on four essential oils. Based on the characterization of nanoemulsions, M. piperita, T. vulgaris, and C. limon oils produced the smallest droplets. However, P. granatum oil produced high droplets size. The products were evaluated in vitro for antimicrobial activity against two pathogenic food bacteria, Escherichia coli and Salmonella typhimunium. The in vivo antibacterial activity was further investigated on minced beef meat during storage at 4 °C for ten days. Based on the MIC values, E. coli was more susceptible than S. typhimunium. Chitosan was more effective as an antibacterial than essential oils (MIC = 500 and 650 mg/L against E. coli and S. typhimunium). Among the tested products, C. limon had a more antibacterial effect. In vivo studies proved that C. limon and its nanoemulsion were the most active products against E.coli. These results suggest that chitosan-essential oil nanoemulsions may help extend the shelf life of meat by acting as antimicrobial agents.


Subject(s)
Chitosan , Oils, Volatile , Animals , Cattle , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Escherichia coli , Olive Oil , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
3.
J Environ Sci Health B ; 58(4): 345-356, 2023.
Article in English | MEDLINE | ID: mdl-37006160

ABSTRACT

The present study assessed the removal of fenamiphos, imidacloprid, and oxamyl pesticides from water using algal Nannochloropsis oculata biomass. Several factors, such as algal biomass concentration, incubation time, and pesticide concentration, were studied for their impact on pesticide removal. Analysis and quantification of pesticides by rapid HPLC have been developed and validated. The optimum conditions were obtained at 15 min, 50 mg/L of pesticide concentration, and 4,500 mg/L of the algal biomass with 92.24% and 90.43% removal for fenamiphos and imidacloprid, respectively. While optimum parameters of 10 min incubation, 250 mg/L of pesticide concentration, and 2,750 mg/L of the algal biomass exhibited 67.34% removal for oxamyl. N. oculata, marine microalgae, successively removed different concentrations of the tested pesticides from water, and the algal biomass showed a potential reduction of pesticides in polluted water samples.


Subject(s)
Microalgae , Pesticides , Stramenopiles , Biomass , Water , Chromatography, High Pressure Liquid
4.
Anal Sci ; 38(12): 1457-1487, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36198988

ABSTRACT

Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.


Subject(s)
Pesticides , Solid Phase Extraction , Solid Phase Microextraction/methods , Solvents/chemistry , Polymers/chemistry
5.
BMC Complement Med Ther ; 22(1): 256, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192714

ABSTRACT

BACKGROUND: Propolis extracted from beehives has been conferred with natural antimicrobial and antioxidant properties. Hence, it has been recommended as a wound healing therapy. This study investigated the additive value of nanotechnology to the herbal extract, (propolis rebuts), after which we examined its efficacy in wound healing. METHODS: Propolis nanostructured lipid carriers (NLCs) were first prepared using the emulsion-evaporation-solidification method at three concentrations. Then, we compared their flavonoid and phenolic contents and phenolic contents. Their antioxidant, antibacterial, and antifungal effects were also investigated after which, the skin regenerative capacity of propolis-NLCs was assessed using full-thickness skin wounds in rabbits. RESULTS: This study showed that propolis-NLCs had increased the phenolic and flavonoid contents compared to the raw propolis extract (EXTR) (9-fold and 2-fold, respectively). This increase was reflected in their antioxidant activities, which dramatically increased by 25-fold higher than the propolis-EXTR. Also, propolis-NLCs exhibited a 2-fold higher potent inhibitory effect than propolis-EXTR on Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), Gram-negative bacterium (Salmonella spp.), and fungus (Candida albicans) microbes (p < 0.0001). Investigations also revealed that treatment of full-thickness skin injuries with propolis-NLCs resulted in significantly higher wound closure compared to propolis-EXTR and the control after two weeks (p < 0.0001). CONCLUSION: With a prominent broad-spectrum antibacterial effect propolis-NLCs exhibited higher skin regenerative potency than propolis-EXTR. We also highlighted the additive impact of nanotechnology on herbal extract, which accounted for the increased flavonoid content and hence a better antioxidant and antimicrobial effect and propose it as a potential therapy for wound healing.


Subject(s)
Anti-Infective Agents , Propolis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Emulsions/pharmacology , Flavonoids/pharmacology , Lipids , Microbial Sensitivity Tests , Phenols/pharmacology , Propolis/pharmacology , Rabbits , Wound Healing
6.
Pestic Biochem Physiol ; 185: 105151, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35772840

ABSTRACT

The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (-28.4, -22.2, -23.6, and - 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.


Subject(s)
Culex , Insecticides , Oils, Volatile , Animals , Insecticides/chemistry , Insecticides/pharmacology , Larva , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Tea
7.
Pestic Biochem Physiol ; 178: 104938, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34446205

ABSTRACT

The adverse effects of chlorpyrifos, cypermethrin, and imidacloprid on mitochondrial dysfunction and oxidative stress biomarkers were studied in rat liver. The liver deficiency was also confirmed by histological analysis and gel electrophoresis. Each insecticide was administered orally with five doses per week for 28 days to male albino rats at 1/50 of the LD50 per insecticide. The results demonstrated that the mitochondrial dysfunction was confirmed by a significant decrease in NADH dehydrogenase and ATPase activities. Oxidative stress biomarkers include malondialdehyde (MDA), and protein carbonyl content (PCC) were significantly increased. However, superoxide dismutase (SOD) and glutathione S-transferase (GST) as antioxidant enzymes were significantly decreased in the mitochondria of the rat liver. HPLC analysis showed a significant increase of the 8-hydroxy-2'-deoxyguanosine (8-OH-2DG) as a biomarker of the DNA damage in rat liver. In addition, the residue levels of 0.96 and 0.29 µg/mL serum were found for cypermethrin and imidacloprid, respectively. However, chlorpyrifos not detected using the HPLC analysis. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed a change in the pattern and sequence of complexions of the electron transport chain in liver mitochondria with treatment by such insecticides. The hepatic histological examination also showed symptoms of abnormalities after exposure to these insecticides.


Subject(s)
Chlorpyrifos , Insecticides , Animals , Antioxidants/metabolism , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Insecticides/metabolism , Insecticides/toxicity , Liver/metabolism , Mitochondria , Neonicotinoids , Nitro Compounds , Oxidative Stress , Protein Carbonylation , Pyrethrins , Rats
8.
Environ Toxicol Pharmacol ; 87: 103724, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34416397

ABSTRACT

The testicular deficiency associated with exposure to three widely used insecticides in Egyptian agriculture was evaluated. Animals were orally treated with sub-lethal dose (1/50 of the oral LD50) of cypermethrin (CYP), imidacloprid (IMC), and chlorpyrifos (CPF) at 5, 9 and 1.9 mg/kg/day, respectively, five times a week for one month. The CYP, IMC, and CPF exposure resulted in a significant decline in animal body weight, sperm count, motility, normality, and viability with increased head and tail deformities. Significant reduction in serum testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), testis superoxide dismutase (SOD), and reduced glutathione (GSH) levels. In contrast, catalase (CAT), lipid peroxidation (LPO), and protein carbonyl content (PCC) levels were significantly stimulated. Jointly, obtained results were confirmed by microscopic examination of testis sections. The present data concluded that the CYP, IMC, and CPF have a public health impact and violently interferes with male rat reproductive system.


Subject(s)
Chlorpyrifos/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Pyrethrins/toxicity , Testis/drug effects , Animals , Catalase/metabolism , Follicle Stimulating Hormone/blood , Glutathione/metabolism , Lipid Peroxidation/drug effects , Luteinizing Hormone/blood , Male , Protein Carbonylation/drug effects , Rats , Spermatozoa/abnormalities , Spermatozoa/drug effects , Superoxide Dismutase/metabolism , Testis/metabolism , Testis/pathology , Testosterone/blood
9.
J Egypt Public Health Assoc ; 96(1): 21, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34264427

ABSTRACT

BACKGROUND: The growing threat of vector-borne diseases and environmental pollution with conventional pesticides has led to the search for nanotechnology applications to prepare alternative products. METHODS: In the current study, four pyrethroid insecticides include alpha-cypermethrin, deltamethrin, lambda-cyhalothrin, and permethrin were incorporated into stable nanoemulsions. The optimization of nanoemulsions is designed based on the active ingredient, solvent, surfactant, sonication time, sonication cycle, and sonication energy by factorial analysis. The nanoscale emulsions' droplet size and morphology were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The toxicity of nanoemulsions against Culex pipiens larvae was evaluated and compared with the technical and commercial formulations. The in vitro assay of adenosine triphosphatase (ATPase), carboxylesterase (CaE), and glutathione-S-transferase (GST) were also investigated. Furthermore, molecular docking was examined to assess the binding interactions between the tested pyrethroids and the target enzymes. Also, an ecotoxicological assessment of potential effects of the tested products on the freshwater alga Raphidocelis subcapitata was determined according to OECD and EPA methods. The emulsifible concentration (EC50) and NOEC (no observed effect concentration) values were estimated for each insecticide and graded according to the GHS to determine the risk profile in aquatic life. RESULTS: The mean droplet diameter and zeta potential of the prepared pyrethroid nanoemulsions were found to be in the range of 72.00-172.00 nm and - 0.539 to - 15.40 mV, respectively. All insecticides' nanoemulsions showed significantly high toxicity (1.5-2-fold) against C. pipiens larvae compared to the technical and EC. The biochemical activity data proved that all products significantly inhibited ATPase. However, GST and CaE were significantly activated. Docking results proved that the pyrethroids exhibited a higher binding affinity with CaE and GST than ATPase. The docking scores ranged from - 4.33 to - 10.01 kcal/mol. Further, the biosafety studies of the nanopesticides in comparison with the active ingredient and commercial EC were carried out against the freshwater alga R. subcapitata and the mosquitocidal concentration of nanopesticides was found to be non-toxic. CONCLUSION: The mosquitocidal efficacy of nano-pyrethroids formulated in a greener approach could become an alternative to using conventional pesticide application in an environmentally friendly manner.

10.
Int J Biol Macromol ; 186: 724-734, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34273342

ABSTRACT

Chitosan (Ch) was reacted with seven benzaldehyde analogs separately through reductive amination in which the corresponding imines were formed and followed by reduction to produce N-(benzyl) chitosan (NBCh) derivatives. 1H NMR spectroscopy was used to characterize the products. The nanoparticles (NPs) of Ch and NBCh derivatives were prepared according to the ionotropic gelation mechanism between Ch products and sodium tripolyphosphate, followed by high-energy ultrasonication. Scanning electron microscopy, particle size, polydispersity index, and zeta potential were applied for the NPs examination. The particle size was ranged from 235.17 to 686.90 nm and narrow size distribution (PDI <1). The zeta potential of NPs was varied between -1.26 and -27.50 mV. The antimicrobial activity was evaluated against bacteria (Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. carotovora, and Ralstonia solanacearum), fungi (Aspergillus flavus and Aspergillus niger), and yeast (Candida albicans). The action of NBCh derivatives was significantly higher than Ch. The NPs had considerably higher than the Ch and NBCh derivatives. The activity was directly proportional to the chemical derivatization of Ch and the zeta potential of the NPs. The antimicrobial efficacy of these derivatives formulated in a greener approach could become an alternative to using traditional antimicrobial applications in an environmentally friendly manner.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Chitosan/pharmacology , Fungi/drug effects , Nanoparticles , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Bacteria/growth & development , Chitosan/analogs & derivatives , Chitosan/chemical synthesis , Fungi/growth & development , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Yeasts/drug effects , Yeasts/growth & development
11.
Int J Biol Macromol ; 156: 127-136, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32289415

ABSTRACT

Chitosan nanoparticles loaded monoterpenes (ChMNPs) were prepared for preservation of minced meat from oxidative changes and growth of microorganisms. Four monoterpenes (limonene, linalool, menthol and thymol) were used to synthesis of four different types of ChMNPs. The physicochemical characteristics of nanoparticles were analyzed using Scanning electron microscopy (SEM) and Zeta potential. SEM showed that the nanoparticles were nearly uniformly shape and size and the zeta potential values ranged between 0.0346 and -0.1690 mV. In vitro antimicrobial activity of Ch, monoterpenes (M) and ChMNPs against Gram (-) bacteria Escherichia coli (ATCC 8739) and Salmonella typhimurium (ATCC 1402) was analyzed using serial dilution test. E. coli was more susceptible than S. typhimurium to these products. ChMNPs exhibited good in vivo antimicrobial and antioxidant property for the minced meat samples during refrigerated storage. Verification of testing hypothesis was performed by assessing a DPPH radical scavenging activity, peroxide value and E. coli reduction of experimental nanoparticles. Significant effects of ChMNPs were observed at 1000 and 2500 mg/kg on the total number of E. coli in meat samples during storage time. The results indicate that ChMNPs can be used to preserve food as antimicrobial agents and to extend shelf life.


Subject(s)
Chitosan/chemistry , Food Preservatives/chemistry , Food Preservatives/chemical synthesis , Monoterpenes/chemistry , Nanoparticles/chemistry , Red Meat/microbiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cattle , Chitosan/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Microbiology , Food Preservation/methods , Food Preservatives/pharmacology , Microscopy, Electron, Scanning , Monoterpenes/pharmacology , Nanoparticles/ultrastructure , Peroxides/analysis , Red Meat/analysis , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
12.
J Environ Sci Health B ; 55(6): 517-524, 2020.
Article in English | MEDLINE | ID: mdl-32065572

ABSTRACT

The current study estimated the dissipation rates of abamectin, chlorfenapyr and pyridaben acaricides in pods of green beans (Phaseolus vulgaris L.) under field conditions in Egypt. Pesticides were extracted and cleaned-up by QuEChERS method and were analyzed by HPLC. The dissipation of these acaricides followed the first order kinetics model with half-life (t1/2) values 1.00, 3.50 and 1.50 days for abamectin, chlorfenapyr and pyridaben, respectively. The lowest residues, at different time intervals of field application rate of each pesticide, were observed with abamectin followed by pyridaben and then chlorfenapyr. Pre-harvest intervals (PHIs) were 10.00, 13.50 and 6.00 days for abamectin, chlorfenapyr and pyridaben, respectively and were below the established European maximum residue limits (EU MRLs) 10-14, 14-21 and 7-10 days after application, respectively. If the fresh pods will be consumed after harvest, it is expected that the presence of these pesticides in the food will have a negative impact on human health. Therefore, the elimination of the residues of these harmful pesticides must be carried out.


Subject(s)
Acaricides/pharmacokinetics , Ivermectin/analogs & derivatives , Phaseolus/drug effects , Pyrethrins/pharmacokinetics , Pyridazines/pharmacokinetics , Acaricides/analysis , Chemical Fractionation , Chromatography, High Pressure Liquid , Egypt , Food Contamination/analysis , Humans , Ivermectin/analysis , Ivermectin/pharmacokinetics , Kinetics , Pesticide Residues/analysis , Phaseolus/metabolism , Pyrethrins/analysis , Pyridazines/analysis
13.
Pestic Biochem Physiol ; 158: 156-165, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31378352

ABSTRACT

Culex pipiens is a main vector for Bancroftian filariasis, Rift Valley Fever and diseases caused by other viruses, leaving several peoples with disabilities. In recent years, plant derived compounds have received much attention as potential alternatives to synthetic chemicals due to their low toxicity to mammals and environmental persistence. Twenty-one monoterpenes from different chemical groups (hydrocarbons and oxygenated products) were evaluated against Culex pipiens larvae. In addition, in vivo biochemical studies including effects on acetylcholine esterase (AChE), acid and alkaline phosphatases (ACP and ALP), total adenosine triphosphatase (ATPase) and gamma-aminobutyric acid transaminase (GABA-T) were investigated. Furthermore, in silico studies including pharmacophore elucidation, ADMET analysis and molecular docking of these compounds were performed. Among all tested monoterpenes, hydrocarbons [p-cymene, (R)-(+)-limonene and (+)-α-pinene], acetates (cinnamyl acetate, citronellyl acetate, eugenyl acetate and terpinyl acetate), alcohols [(±)-ß-citronellol and terpineol], aldehydes [citral and (1R)-(-)-myrtenal] and ketone [(R)-(+)-pulegone] exhibited the highest larval toxicity with LC50 = 14.88, 27.97, 26.13, 2.62, 3.81, 2.74, 21.65, 1.64, 21.70, 21.76, 1.68 and 1.90 mg/L after 48 h of exposure, respectively. The compounds proved a significant inhibition of all tested enzymes except total ATPase. The biochemical and molecular docking studies proved that AChE and GABA-T were the main targets for the tested monoterpenes.


Subject(s)
Culex/virology , Insecticides/pharmacology , Monoterpenes/pharmacology , Alkaline Phosphatase/metabolism , Animals , Culex/pathogenicity , Elephantiasis, Filarial/transmission , Enzyme Activation/drug effects , Esterases/metabolism , Molecular Docking Simulation , Transaminases/metabolism
14.
Pestic Biochem Physiol ; 158: 185-200, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31378356

ABSTRACT

The present work describes the antimicrobial action of 25 monoterpenes (six hydrocarbons, five ketones, two aldehydes, six alcohols and six acetate analogues) against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and antifungal activity against Aspergillus flavus. The antibacterial activity was evaluated by broth microdilution technique as a minimum inhibitory concentration (MIC) and the antifungal activity was performed by mycelia radial growth technique as the effective concentration causing 50% inhibition of the mycelial growth (EC50). The results showed that thymol and α-terpineol were the most potent against E. coli (MIC = 45 and 55 mg/L, respectively) and S. aureus (MIC = 135 and 225 mg/L, respectively). The results also showed that thymol displayed the maximum antifungal action against A. flavus with EC50 20 mg/L. Furthermore, the antioxidant activity was determined using N,N-dimethyl-1,4-phenylenediamine (DMPD) and the results showed that geraniol were the most potent compound (IC50 = 19 mg/L). Molecular docking studies indicated that the compounds displayed different binding interactions with the amino acid residues at the catalytic sites of N5-carboxyaminoimidazole synthetase and oxysterol binding protein Osh4 enzymes. Non-covalent interactions including van der Waals, hydrogen bonding as well as hydrophobic were observed between the compounds and the enzymes. A significant relationship was found between the docking score and the biological activity of the tested monoterpenes compared to the ceftriaxone and carbendazim as standard bactericide and fungicide, respectively. In silico ADMET properties were also performed and displayed potential for the development of promising antimicrobial agents. For these reasons, these compounds may be considered as potential ecofriendly alternatives in food preservation to delay or prevent the microbial infection and prolong the shelf life of food products.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Monoterpenes/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Cyclohexane Monoterpenes , Cyclohexenes/chemistry , Cyclohexenes/pharmacology , Escherichia coli/drug effects , Hydrocarbons/chemistry , Hydrocarbons/pharmacology , Microbial Sensitivity Tests , Monoterpenes/chemistry , Monoterpenes/pharmacology , Staphylococcus aureus/drug effects
15.
J Environ Sci Health B ; 54(11): 898-905, 2019.
Article in English | MEDLINE | ID: mdl-31328628

ABSTRACT

A selective liquid chromatographic analytical method was studied for determination of two neonicotinoids, acetamiprid and imidacloprid, in tomato fruits under greenhouse conditions in Egypt. The fruits were extracted and cleaned up by QuEChERS method followed by HPLC determination. The method showed a good linearity with a determination coefficient (R2) of higher than 0.99 for the 0.0125-0.15 µg/mL concentration range. The method was validated using a blank tomato spiked at 5, 25 and 50 mg/kg and the recovery percentages were 83.71, 94.52 and 97.49% for acetamiprid and 88.59, 89.63 and 90.18% for imidacloprid, respectively. The rates of dissipation of both pesticides were studied and the preharvest intervals (PHIs) were calculated. Imidacloprid dissipated faster than acetamiprid and half-life periods were 1.30 and 2.07 days, respectively. Acetamiprid and imidacloprid residues were below the already established European maximum residue limits (EU MRLs) (0.5 mg/kg) 3 and 5 days after application, respectively.


Subject(s)
Neonicotinoids/analysis , Nitro Compounds/analysis , Pesticide Residues/analysis , Solanum lycopersicum/chemistry , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Solanum lycopersicum/growth & development
16.
Pestic Biochem Physiol ; 156: 105-115, 2019 May.
Article in English | MEDLINE | ID: mdl-31027569

ABSTRACT

Six natural monoterpenes (1,8-cineole, (-)-citronellal, limonene, α-pinene, pulegone and 4-terpineol) showed high acaricidal activity by fumigant and contact actions against adult females of the two-spotted spider mite, Tetranychus urticae Koch. The monoterpenes exhibited varying degrees of acaricidal potency using contact toxicity test after 24 and 48 h of treatment, where the LC50 values were <160 and 45 mg/L, respectively. In fumigation test, of these six monoterpenes, pulegone exhibited the highest toxicity (LC50 = 3.81 mg/L air), while (-)-citronellal had the lowest fumigant toxicity (LC50 = 15.20 mg/L air). All compounds had high inhibitory effect on acetylcholinesterase (AChE) and gama amino butyric acid transaminase (GABA-T) activities. Pulegone was the most AChE inhibitor (IC50 = 8.79 mg/L), while 4-terpineol revealed the lowest inhibitory effect (IC50 = 32.82 mg/L). However, limonene caused the highest inhibition of GABA-T (IC50 = 11.37 mg/L). The molecular docking studies revealed that the compounds displayed different binding interactions with the amino acid residues at the catalytic sites of AChE and GABA-T enzymes. Noncovalent interactions especially van der Waals, hydrogen bonding as well as hydrophobic was found between the compounds and the enzymes. A significant relationship was found between the docking score and the biological activity of monoterpenes compared to the standard acaricide pyridaben. In silico ADMET properties were also performed and displayed potential for the development of good acaricidal candidates.


Subject(s)
Monoterpenes/pharmacology , Tetranychidae/drug effects , Animals , Cholinesterase Inhibitors/pharmacology , Cyclohexane Monoterpenes , Limonene/pharmacology , Molecular Docking Simulation
17.
J Environ Sci Health B ; 54(6): 475-488, 2019.
Article in English | MEDLINE | ID: mdl-30931735

ABSTRACT

The behavior of chlorantraniliprole (CAP) and dinotefuran (DNF) insecticides was investigated in clay loam soil, a common type of the Egyptian soil. Effect of temperature, pH and particle size of the soil on the adsorption process was studied. Adsorption isotherm by bulk soil and its constituents; humic acid (HA), clay, silt and sand fractions was measured using batch equilibration technique. The results showed that the adsorption of the insecticides tested was significantly affected by the temperature and was a spontaneous interfacial process in the soil. Freundlich model accurately predicted the adsorption behavior of both insecticides. The interaction between soil and insecticides was endothermic and the highest adsorption for CAP and DNF was obtained at pH 9. However, the effect of pH on the adsorption of DNF was lower than that of CAP. Sorption of CAP and DNF on HA fraction was significantly greater than on clay fraction and bulk soil. In addition, the adsorption was significantly increased with particle size decrease. It could be inferred that the adsorption of CAP and DNF on clay loam soil was physical in nature and greatly influenced by the soil components, pH and temperature.


Subject(s)
Guanidines/chemistry , Neonicotinoids/chemistry , Nitro Compounds/chemistry , ortho-Aminobenzoates/chemistry , Adsorption , Clay , Egypt , Humic Substances , Hydrogen-Ion Concentration , Insecticides/chemistry , Particle Size , Soil , Soil Pollutants , Temperature , Thermodynamics
18.
Curr Org Synth ; 16(5): 801-809, 2019.
Article in English | MEDLINE | ID: mdl-31984896

ABSTRACT

OBJECTIVE: 5-Amino-2-alkyl/glycosylthio-1,3,4-thiadiazoles have been synthesized by the reaction of 5-amino-1,3,4-thiadiazole-2-thiol with a variety of alkylating agents or glycosyl halides in the presence of anhydrous potassium carbonate in dry acetone. METHODS: The structures of the newly synthesized compounds have been established based on their spectral data (FT-IR, 1H- and 13C-NMR) and mass spectrometry. They were tested for their antioxidant behaviour by the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. The in silico pharmacokinetics ADME properties of the potent antioxidant compounds were investigated by using Accelrys Discovery Studio (DS) 2.5 software. RESULTS AND CONCLUSION: Regioselective alkylation and glycosylation of 5-amino-1,3,4-thiadiazole-2-thiol were noticed during its reaction with alkylating agents and glycosyl halides. Alkylating agents gave the Sfunctionalized derivatives, while the acetylated glycosyl halides afforded the S-glycosylated products together with their respective N-acetyl derivatives. The benzoylated glycosyl halide behaved in a different manner and gave N-glycoside analogue of 1,3,4-thiadiazole-2(3H)-thione, in addition to the expected sulfanyl S-glycoside. Most of the synthesized compounds showed noticeable antioxidant activity with respect to ceftriaxone as a standard drug. Some of the most active compounds showed acceptable predicted pharmacokinetics and druglikeness properties.


Subject(s)
Antioxidants/chemical synthesis , Thiadiazoles/chemical synthesis , Alkylation , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Glycosylation , Picrates/chemistry , Thiadiazoles/chemistry
19.
Int J Anal Chem ; 2018: 3640691, 2018.
Article in English | MEDLINE | ID: mdl-30369950

ABSTRACT

The present study aims to prepare two new types of chitosan-metal oxide nanoparticles (Ch-MO NPs), namely, chitosan-copper oxide nanoparticles (Ch-CuO NPs) and chitosan-zinc oxide nanoparticles (Ch-ZnO NPs), using sol-gel precipitation mechanism, and test them new as adsorbent materials for extraction and clean-up of different pesticides from water. The design of core-shell was implemented by metal oxide core with chitosan as a hard shell after crosslinking mechanism by glutaraldehyde and then epichlorohydrin. The characterizations of the prepared nanoparticles were investigated using Fourier transform infrared spectrometry (FT-IR), zeta potential, scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). FT-IR confirmed the interaction between chitosan, metal oxide, and crosslinking mechanism. SEM and TEM explained that the nanoparticles have a spherical morphology and nanosize of 93.74 and 97.95 nm for Ch-CuO NPs and Ch-ZnO NPs, respectively. Factorial experimental design was applied to study the effect of pH, concentration of pesticide, agitation time, and temperature on the efficiency of adsorption of pesticides from water samples. The results indicated that optimum conditions were pH of 7, temperature of 25°C, and agitation time of 25 min. The SPE cartridges were then packed with Ch-MO NPs, and seven pesticides of abamectin, diazinon, fenamiphos, imidacloprid, lambda-cyhalothrin, methomyl, and thiophanate-methyl were extracted from water samples and determined by HPLC. The extraction efficiency of Ch-ZnO NPs was higher than Ch-CuO NPs, but both removed a larger amount of most of tested pesticides than the standard ODS cartridge (C18). The results showed that this method achieves rapid and simple extraction in small quantities of adsorbents (Ch-MO NPs) and solvents. In addition, the method is highly sensitive to pesticides and has a high recovery rate.

20.
J Environ Sci Health B ; 53(7): 411-422, 2018.
Article in English | MEDLINE | ID: mdl-29509102

ABSTRACT

Effective, selective, precise and accurate liquid chromatographic analytical methods for the analysis of a novel chlorantraniliprole insecticide in technical and formulation (coragen, 20% SC) have been optimized and validated. Eight methods were designed based on different mobile phases, temperature and two HPLC columns. The mobile phase consists of two mixtures (acetonitrile:water, 70:30 and methanol:water, 70:30) with 25 or 40ºC. HPLC analysis of chlorantraniliprole was carried out at a wavelength of 260 nm, with a flow rate of 0.8 mL/min. The calibration curves showed a good linear relationship (R2 ˃ 0.99) in the injected quantities ranged from 0.0125 to 1.00 µg. Limit of detection (LOD) was found to be 3.94 to 14.56 ng and from 5.95 to 12.93 ng using the analytical methods I to IV by MicroPack CN-10 and V-VIII by ZORBAX Eclips Plus C18 columns, respectively, based on SDslope values. ZORBAX Eclips Plus C18 column with method VI was the best one (R2 = 1.00 and RSD = 0.30), short retention time (4.936 min), high theoretical plates per column (65457.15) compared to others and LOD = 6.49 ng. The accuracy of the best method was demonstrated by recovery rates of 83.04% to 98.50% for grape samples supplemented with 5, 10 and 50 mg chlorantraniliprole/kg.


Subject(s)
Chromatography, High Pressure Liquid/methods , Insecticides/analysis , ortho-Aminobenzoates/analysis , Acetonitriles/chemistry , Calibration , Limit of Detection , Methanol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...