Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(5): 2924-2935, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38637912

ABSTRACT

Herein, a facile and highly effective nonenzymatic electrochemical sensing system is designed for the detection of the antibacterial drug nitrofurantoin (NFT). This electrocatalyst is a combination of a trimetallic Prussian blue analogue and conductive polyaniline coated onto a three-dimensional porous nickel foam substrate. A comprehensive set of physicochemical analyses have verified the successful synthesis. The fabricated electrochemical sensor exhibits an impressively low limit of detection (0.096 nM) and quantification (0.338 nM, S/N = 3.3), coupled with a wide linear range spanning from 0.1 nM to 5 mM and a sensitivity of 13.9 µA nM-1 cm-2. This excellent performance is attributed to the collaborative effects of conducting properties of polyaniline (PANI) and the remarkable redox behavior of the Prussian blue analogue (PBA). When both are integrated into the nickel foam, they create a significantly enlarged surface area with numerous catalytic active sites, enhancing the sensor's efficiency. The sensor demonstrates a high degree of specificity for NFT, while effectively minimizing responses to potential interferences such as flutamide, ascorbic acid, glucose, dopamine, uric acid, and nitrophenol, even when present in 2-3-fold higher concentrations. Moreover, to validate its practical utility, the sensor underwent real sample analysis using synthetic urine, achieving outstanding recovery rates of 118 and 101%.


Subject(s)
Aniline Compounds , Ferrocyanides , Materials Testing , Nickel , Nitrofurantoin , Aniline Compounds/chemistry , Ferrocyanides/chemistry , Nickel/chemistry , Nitrofurantoin/chemistry , Nitrofurantoin/analysis , Porosity , Humans , Electrochemical Techniques , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Surface Properties
2.
Mikrochim Acta ; 191(5): 252, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589716

ABSTRACT

A flexible, wearable, non-invasive contact lens sensor utilizing nickel-cobalt metal-organic framework (Ni-Co-MOF) based hydrogel is introduced for urea monitoring in tear samples. The synthesized Ni-Co-MOF hydrogel exhibits a porous structure with interconnected voids, as visualized by Scanning Electron Microscopy (SEM). Detailed structural and vibrational properties of the material were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed Ni-Co-MOF hydrogel sensor showcases a detection limit of 0.445 mM for urea within a linear range of 0.5-70 mM. Notably, it demonstrates exceptional selectivity, effectively distinguishing against interfering species like UA, AA, glucose, dopamine, Cl-, K+, Na+, Ca2+, and IgG. The enhanced electrocatalytic performance of the Ni-Co-MOF hydrogel electrode is attributed to the presence of Ni and Co, fostering Ni2+ oxidation on the surface and forming a Co2+ complex that acts as a catalyst for urea oxidation. The fabricated sensor exhibits successful detection and retrieval of urea in simulated tear samples, showcasing promising potential for bioanalytical applications. The binder-free, non-toxic nature of the Ni-Co-MOF hydrogel sensor presents exciting avenues for future utilization in non-enzymatic electrochemical sensing, including applications in wearable devices, point-of-care diagnostics, and personalized healthcare monitoring.


Subject(s)
Metal-Organic Frameworks , Wearable Electronic Devices , Nickel/chemistry , Metal-Organic Frameworks/chemistry , Urea , Cobalt , Hydrogels
3.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334120

ABSTRACT

Here, we demonstrate hydrothermally grown bismuth sulfide (Bi2S3) micro flowers decorated nickel foam (NF) for electrochemical detection of melamine in bottled milk samples. The orthorhombic phase of hydrothermally grown Bi2S3is confirmed by the detailed characterization of x-ray diffraction and its high surface area micro flowers-like morphology is investigated via field emission scanning electron microscope. Furthermore, the surface chemical oxidation state and binding energy of Bi2S3/NF micro flowers is analyzed by x-ray photoelectron spectroscopy studies. The sensor exhibits a wide linear range of detection from 10 ng l-1to 1 mg l-1and a superior sensitivity of 3.4 mA cm-2to melamine using differential pulse voltammetry technique, with a lower limit of detection (7.1 ng l-1). The as-fabricated sensor is highly selective against interfering species of p-phenylenediamine (PPDA), cyanuric acid (CA), aniline, ascorbic acid, glucose (Glu), and calcium ion (Ca2+). Real-time analysis done in milk by the standard addition method shows an excellent recovery percentage of Ì´ 98%. The sensor's electrochemical mechanism studies reveal that the high surface area bismuth sulfide micro flowers surface interacts strongly with melamine molecules through hydrogen bonding and van der Waals forces, resulting in a significant change in the sensor's electrical properties while 3D skeletal Nickel foam as a substrate provides stability, enhances its catalytic activity by providing a more number /of active sites and facilitates rapid electron transfer. The work presented here confirms Bi2S3/NF as a high-performance electrode that can be used for the detection of other biomolecules used in clinical diagnosis and biomedical research.


Subject(s)
Bismuth , Milk , Nickel , Sulfides , Triazines , Animals , Nickel/chemistry , Milk/chemistry , Glucose/analysis , Electrochemical Techniques
4.
Nanotechnology ; 35(18)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295400

ABSTRACT

Albumin is a vital blood protein responsible for transporting metabolites and drugs throughout the body and serves as a potential biomarker for various medical conditions, including inflammatory, cardiovascular, and renal issues. This report details the fabrication of Ni-metal organic framework/SnS2nanocomposite modified nickel foam electrochemical sensor for highly sensitive and selective non enzymatic detection of albumin in simulated human blood serum samples. Ni-metal organic framework/SnS2nanocomposite was synthesized using solvothermal technique by combining Ni-metal-organic framework (MOF) with conductive SnS2leading to the formation of a highly porous material with reduced toxicity and excellent electrical conductivity. Detailed surface morphology and chemical bonding of the Ni-MOF/SnS2nanocomposite was studied using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red, and Raman analysis. The Ni-MOF/SnS2nanocomposite coated on Ni foam electrode demonstrated outstanding electrochemical performance, with a low limit of detection (0.44µM) and high sensitivity (1.3µA/pM/cm2) throughout a broad linear range (100 pM-10 mM). The remarkable sensor performance is achieved through the synthesis of a Ni-MOF/SnS2nanocomposite, enhancing electrocatalytic activity for efficient albumin redox reactions. The enhanced performance can be attributed due to the structural porosity of nickel foam and Ni-metal organic framework, which favours increased surface area for albumin interaction. The presence of SnS2shows stability in acidic and neutral solutions due to high surface to volume ratio which in turn improves sensitivity of the sensing material. The sensor exhibited commendable selectivity, maintaining its performance even when exposed to potential interfering substances like glucose, ascorbic acid, K+, Na+, uric acid, and urea. The sensor effectively demonstrates its accuracy in detecting albumin in real samples, showcasing substantial recovery percentages of 105.1%, 110.28%, and 91.16%.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Humans , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Serum , Electrodes , Electrochemical Techniques
5.
Nanotechnology ; 35(6)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37863076

ABSTRACT

Fibrinogen, a circulating glycoprotein in the blood, is a potential biomarker of various health conditions. This work reports a flexible electrochemical sensor based on Ni-Fe layered double hydroxide (Ni-Fe LDH) coated on Nickel foam (Ni-Fe LDH/NF) to detect fibrinogen in simulated human body fluid (or blood plasma). The nanoflakes like morphology and hexagonal crystal structure of LDH, synthesized via urea hydrolysis assisted precipitation technique, are revealed by scanning electron microscopy (SEM) and powder x-ray diffraction (PXRD) techniques, respectively. The fabricated sensor exhibits linearity in a wide dynamic range covering the physiological concentration, from 1 ng ml-1to 10 mg ml-1, with a sensitivity of 0.0914 mA (ng/ml)-1(cm)-2. This LDH-based sensor is found to have a limit of detection (LOD) of 0.097 ng ml-1and a limit of quantification (LOQ) of 0.294 ng ml-1(S/N = 3.3). The higher selectivity of the sensor towards fibrinogen protein is verified in the presence of various interfering analytes such as dopamine, epinephrine, serotonin, glucose, potassium, chloride, and magnesium ions. The sensor is successful in the trace-level detection of fibrinogen in simulated body fluid with excellent recovery percentages ranging from 99.5% to 102.5%, proving the synergetic combination of 2D Ni-Fe layered double hydroxide and 3D nickel foam as a promising platform for electrochemical sensing that has immense potential in clinical applications.


Subject(s)
Body Fluids , Nickel , Humans , Nickel/chemistry , Fibrinogen , Hydroxides/chemistry
6.
Nanotechnology ; 35(1)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37797605

ABSTRACT

In this work, we report a vertical contact-separation mode triboelectric nanogenerators (TENG) comprising of Ni3C/PDMS composite and Nylon Nanofibers for self-powering a nichrome wire-based thermal patch for muscular/joint relaxation. An optimised composition of Ni3C (25 wt%) and PDMS as a tribo-negative material and Nylon Nanofibers synthesised via electrospinning on copper electrode foil as a tribo-positive material were used to fabricate the TENG. The fabricated TENG exhibits outstanding output generating an average open circuit voltage of ∼252 V, an average short circuit current of ∼40.87µA and a peak power of ∼562.35µW cm-2at a matching resistance of 20 MΩ by manual tapping. Enhancement in contact area due to electrospun nylon and micro capacitive Ni3C flakes in dielectric PDMS contribute to the exceptional performance of the TENG. The optimised TENG is then connected to a full bridge rectifier with a 100 nF filtering capacitor to convert the AC voltage to a DC output with a peak voltage of ∼5.4 V and a ripple voltage of ∼1.04 V to recharge an ICR 18650 Li-ion battery, which functions as a medium to improve electrical energy flow to the heat patch. The electrical energy is converted into heat energy by a wounded nichrome wire placed inside the heat patch. The nichrome wire of length 3 cm with appropriate number of windings was employed in the heat patch. An increment of 45 °F can be observed by switching the charged Li-ion battery-based circuit ON for just 30 s. The strategy of self-powering a heat patch using this TENG finds enormous applications in physiotherapy and sports to relieve muscle and joint pains.

7.
Nanotechnology ; 34(43)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37551658

ABSTRACT

Cholesterol (CH) is a vital diagnostic marker for a variety of diseases, making its detection crucial in biological applications including clinical practice. In this work, we report the synthesis of tin oxide-polyaniline nanocomposite-modified nickel foam (SnO2-PANI/NF) for non-enzymatic detection of CH in simulated human blood serum. SnO2was synthesized via the hydrothermal method, followed by the synthesis of SnO2-PANI nanocomposite throughin situchemical polymerization of aniline using ammonium persulfate as the oxidizing agent. Morphological studies display agglomerated SnO2-PANI, which possess diameters ranging from an average particle size of ∼50 to ∼500 nm, and the XRD analysis revealed the tetragonal structure of the SnO2-PANI nanocomposite. Optimization studies demonstrating the effect of pH and weight percentage are performed to improve the electrocatalytic performance of the sensor. The non-enzymatic SnO2-PANI/NF sensor exhibits a linear range of 1-100µM with a sensitivity of 300µAµM-1/cm-2towards CH sensing and a low limit of detection of 0.25µM (=3 S m-1). SnO2-PANI/NF facilitates the electrooxidation of CH to form cholestenone by accepting electrons generated during the reaction and transferring them to the nickel foam electrode via Fe (III)/Fe (IV) conversion, resulting in an increased electrochemical current response. The SnO2-PANI/NF sensor demonstrated excellent selectivity against interfering species such as Na+, Cl-, K+, glucose, ascorbic acid, and SO42-. The sensor successfully determined the concentration of CH in simulated blood serum samples, demonstrating SnO2-PANI as a potential platform for a variety of electrochemical-based bioanalytical applications.


Subject(s)
Nanocomposites , Nickel , Humans , Nickel/chemistry , Serum , Nanocomposites/chemistry , Aniline Compounds/chemistry , Cholesterol
8.
Nanotechnology ; 34(40)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37399793

ABSTRACT

Herein, we report a simple non-enzymatic electrochemical sensor for the detection of serotonin (5-HT) in blood serum using ZnO oxide nanoparticles-copper metal-organic framework (MOF) composite on 3D porous nickel foam, namely, ZnO-Cu MOF/NF. The x-ray diffraction analysis reveals the crystalline nature of synthesized Cu MOF and Wurtzite structure of ZnO nanoparticles, whereas SEM characterization confirms the high surface area of the composite nanostructures. Differential pulse voltammetry analysis under optimal conditions yields a wide linear detection range of 1 ng ml-1to 1 mg ml-1to 5-HT concentrations and a LOD (signal to noise ratio = 3.3) of 0.49 ng ml-1, which is well below the lowest physiological concentration of 5-HT. The sensitivity of the fabricated sensor is found to be 0.0606 mA ng-1ml-1.cm2,and it exhibited remarkable selectivity towards serotonin in the presence of various interferants, including dopamine and AA, which coexist in the real biological matrix. Further, successful determination of 5-HT is achieved in the simulated blood serum sample with a good recovery percentage from ∼102.5% to ∼99.25%. The synergistic combination of the excellent electrocatalytic properties and surface area of the constituent nanomaterials proves the overall efficacy of this novel platform and shows immense potential to be used in developing versatile electrochemical sensors.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Zinc Oxide , Copper/chemistry , Serotonin , Nickel , Serum , Porosity , Electrochemical Techniques , Nanoparticles/chemistry
9.
Nanotechnology ; 34(28)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37054702

ABSTRACT

Since lead-based piezoelectric nanogenerators (PENGs) possess serious health risks, environmental problems, proper disposal issues, and biocompatibility concerns, this work presents the fabrication of a flexible piezoelectric nanogenerator utilizing lead-free orthorhombic AlFeO3nanorods for biomechanical energy scavenging to sustainably power electronics. Hydrothermal technique is used to synthesize the AlFeO3nanorods and the PENG was fabricated on Indium tin oxide (ITO) coated Polyethylene terephthalate (PET) flexible film with AlFeO3nanorods interspersed in polydimethylsiloxane (PDMS). transmission electron microscopy proved that the AlFeO3nanoparticles are of nanorods shape. Through x-ray Diffraction, it is validated that AlFeO3nanorods have orthorhombic phase and crystalline structure. A high piezoelectric charge coefficient (d33) of 400 pm V-1is obtained from the piezoelectric force microscopy of AlFeO3nanorods. With optimized concentration of AlFeO3in the polymer matrix, an open circuit voltage (VOC) of 30.5 V, current density (JC) of 0.7888±0.0001µA cm-2and an instantaneous power density of 240.6 mW m-2are obtained under the application of a force of 1.25 kgf. To investigate the nanogenerator's practical utility, the PENG is used for lighting multiple LEDs, charging of a capacitor and as a pedometer via biomechanical energy harvesting. Hence, it can be employed for developing various self-powered wearable electronics such as flexible skin, artificial cutaneous sensors, etc.

10.
ACS Omega ; 7(44): 39491-39497, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385846

ABSTRACT

Early-stage diagnosis of neurological disease and effective therapeutics play a significant role in improving the chances of saving lives through suitable and personalized courses of treatment. Biomolecules are potential indicators of any kind of disorder in a biological system, and they are recognized as a critical quantitative parameter in disease diagnosis and therapeutics, collectively known as theragnostics. The effective diagnosis of neurological disorders solely depends on the detection of the imbalance in the concentration of neurological biomarkers such as nucleic acids, proteins, and small metabolites in bodily fluids such as blood serum, plasma, urine, etc. This process of neurological biomarker detection can lead to an effective prognosis with a prediction of the treatment efficiency and recurrence. While review papers on electrochemical, spectral, and electronic biosensors for the detection of a wide variety of biomarkers related to neurological disorders are available in the literature, the prevailing challenges and developments in perovskite-based biosensors for effective theragnostics of neurological disorders have received scant attention. In this Mini-Review, we discuss the topical advancements in design strategies of perovskite-based electrochemical biosensors with detailed insight into the detection of neurological disease or disorder-specific biomarkers and their trace-level detection in biological fluids with high specificity and sensitivity. The tables in this Review give the performance analysis of recently developed perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. To conclude, the current challenges in biosensing technology for early diagnosis and therapeutics of neurological disorders are discussed along with a forecast of their anticipated developments.

11.
Nanotechnology ; 33(23)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35203065

ABSTRACT

Conventional heterojunction photodetectors rely on planar junction architecture which suffer from low interfacial contact area, inferior light absorption characteristics and complex fabrication schemes. Heterojunctions based on mixed dimensional nanostructures such as 0D-1D, 1D-2D, 1D-3D etc have recently garnered exceptional research interest owing to their atomically sharp interfaces, tunable junction properties such as enhanced light absorption cross-section. In this work, a flexible broadband UV-vis photodetector employing mixed dimensional heterostructure of 1D NiO nanofibers and 3D Fe2O3nanoparticles is fabricated. NiO nanofibers were synthesized via economical and scalable electro-spinning technique and made composite with Fe2O3nanoclusters for hetero-structure fabrication. The optical absorption spectra of NiO nanofibers and Fe2O3nanoparticles exhibit peak absorption in UV and visible spectra, respectively. The as-fabricated photodetector displays quick response times of 0.09 s and 0.18 s and responsivities of 5.7 mA W-1(0.03 mW cm-2) and 5.2 mA W-1(0.01 mW cm-2) for UV and visible spectra, respectively. The fabricated NiO-Fe2O3device also exhibits excellent detectivity in the order of 1012jones. The superior performance of the device is ascribed to the type-II heterojunction between NiO-Fe2O3nanostructures, which results in the localized built-in potential at their interface, that aids in the effective carrier separation and transportation. Further, the flexible photodetector displays excellent robustness when bent over ∼1000 cycles thereby proving its potential towards developing reliable, diverse functional opto-electronic devices.

12.
Mater Horiz ; 9(2): 663-674, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34907407

ABSTRACT

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue that restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic, flexible triboelectric nanogenerator based on bismuth tungstate (Bi2WO6):polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) is fabricated. A hydrothermal technique is used to synthesize highly crystalline Bi2WO6 nanoparticles that are then incorporated inside the P(VDF-TrFE) matrix nanofiber mat using electrospinning over an aluminum-coated PET substrate to yield a nanogenerator with a device configuration of Cu-coated PET/(Bi2WO6:P(PVDF-TrFE)) nanofiber mat/Al-coated PET. The highly crystalline nature of the biconcave shaped Bi2WO6 nanoparticles and ß - P(VDF-TrFE) is confirmed by X-ray powder diffraction (XRD) and Raman spectroscopic techniques. The dielectric constant of the Bi2WO6:P(PVDF-TrFE) nanofiber mat was studied and a high dielectric constant of 44 was observed. The as-fabricated nanogenerator delivers a very high output voltage (open circuit) of 205 V and current density (short circuit) of 11.91 mA m-2 at ∼0.15 kgf without any electric poling, which is higher than all the prior reports in this field. The fabricated nanogenerator possesses very high output stability and ultra-sensitivity with a swift response time of 60 ms. This outstanding performance of the nanogenerator can be ascribed to the synergistic combination of the ß-phase P(VDF-TrFE) polymer and non-centrosymmetric nature of Bi2WO6 nanoparticles. Furthermore, a Bi2WO6-based pH sensor is driven by the energy obtained from the as-fabricated nanogenerator and the real time demonstration of the nanogenerator powering a calculator is also demonstrated. The strategy outlined here presents a cost-effective, high performance alternative for driving various portable bio-compatible self-powered electronic devices.

13.
Mikrochim Acta ; 188(11): 371, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625854

ABSTRACT

A one-pot hydrothermal synthesis of three-dimensional (3D), large-area, bimetallic oxide NiCo2O4 (NCO) microflowers has been developed as a novel substrate for surface-enhanced Raman scattering (SERS) detection of flutamide in biological fluids. The 3D flower-like morphology of the NCO is observed via FESEM micrographs, while the orthorhombic phase formation is confirmed through XRD spectra. Due to the presence of multiple coordination cations of the 3D NCO microflowers (such as Ni2+ and Co2+), the high surface area and surface roughness, the NCO-modified indium tin oxide (NCO/ITO) SERS substrate exhibits a linear detection range from 0.5-500 nM with a low limit of detection (LOD) of 0.1 nM. The SERS substrate provides a high enhancement factor of 1.864 × 106 with an accumulation time of 30 s using a laser source of λ = 532 nm, which can be ascribed to the excellent and rapid interaction between the flutamide molecule and the NCO microflower substrate that leads to photoinduced charge transfer (PICT) resonance. The NCO/ITO substrate exhibits excellent homogeneity and high chemical stability. Besides, the substrate displays an excellent selectivity to flutamide molecules in the existence of other metabolites such as urea, ascorbic acid (AA), glucose, NaCl, KCl, CaCl2, and hydroxyflutamide. The NCO/ITO substrate is successful in the trace-level detection of flutamide in simulated blood serum samples. The strategy outlined here presents a novel strategy for the efficacy of transition metal oxides (TMOs) based electrodes useful for a wide variety of bioanalytical applications.


Subject(s)
Spectrum Analysis, Raman
14.
Anal Chim Acta ; 1169: 338598, 2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34088365

ABSTRACT

In this work, we demonstrate the first report on a low-cost, non-enzymatic, label-free electrochemical sensing of alpha-1-acid-glycoprotein (α1GP) biomarker in biofluids using silica embedded carbon nanosheets (SEC) derived from acorn cupules biomass. The SEC/GCE sensor exhibits low detection limit (LOD) of 30 ng/mL (LOD = 3 s/m) which is far below the lowest physiological concentration of α1GP and a wide linear detection range from 100 ng/mL to 10 mg/mL which covers entire clinical concentration range reported for various diseases like cancer, sepsis, etc. The sensing mechanism of the sensor relies on the direct electrooxidation of sialic acid from the α1GP structure which hinder the interfacial electron-transfer process of [Fe (CN)6]3-/4- redox probe at the electrode-electrolyte interface. The sensor exhibits excellent selectivity and stability towards detection of α1GP which is ascribed to the presence of embedded silica nanoparticles on the surface of the carbon nanosheets. The successful determination of α1GP in the simulated blood serum sample with good recovery percentage (i.e., from ∼94.03% to ∼103.50%) proves the feasibility of the sensor towards clinical applications. The overall efficacy of the sensor proves it as a promising low-cost, sustainable, and non-enzymatic platform for a wide variety of bioanalytical applications.


Subject(s)
Carbon , Electrochemical Techniques , Biomass , Electrodes , Limit of Detection , Orosomucoid , Silicon Dioxide
15.
ACS Appl Bio Mater ; 4(1): 14-23, 2021 01 18.
Article in English | MEDLINE | ID: mdl-35014274

ABSTRACT

Flexible nanofiber-based composites have been widely explored because of their light weight, high surface area, scalability, and tunable physical and mechanical properties. In this work, we report electrospun 2D-Bi2S3 incorporated PVDF/PPy nanofibers as a versatile platform for ultrasensitive pressure, strain, and temperature sensing. Detailed characterization studies revealed the formation of ultrathin nanofibers and characteristic Raman and IR vibration modes of PPy, 2D-Bi2S3, ß-phased PVDF. The fabricated pressure sensor exhibited a sensitivity of 1.51 kPa-1 in the wide linear range of 1-50 kPa and a response time of 0.04 s. The practical ability of pressure sensor was tested by successfully detecting pulse rate of human radial arteries. Further, the BS- PVDF/PPy composite was employed as a strain sensor in the range of 3.1-61.5%, displayed a gauge factor (GF) of 45.45 and a response time of 0.1 s. The wearable sensor was capable of detecting minute changes in hand gestures by recognizing the microstrains applied to the device. The sensing mechanism can be attributed to the excellent piezoelectric property of ß- phase PVDF, electron transport property of PPy nanoparticles and tensile strength of the BS nanoparticles embedded in the polymer matrix. When used as a wearable temperature sensor, the versatile device demonstrated a linear range of detection 24- 48 °C with a response time of 0.33 s and Temperature coefficient of resistance (TCR) of -0.1117 °C-1 that can be attributed to the phonon-assisted hoping mechanism. The nanofiber composite dissolved in volatile organic solvent acetone in 5 days with the least impact on the surrounding environment thus making this a promising strategy to develop transient technologies aimed at zero-waste, green electronics.


Subject(s)
Bismuth/chemistry , Electronics , Fluorocarbon Polymers/chemistry , Nanofibers/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Pressure , Pyrroles/chemistry , Sulfides/chemistry , Temperature , Wearable Electronic Devices
16.
Nanoscale ; 12(28): 15336-15347, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32648865

ABSTRACT

In this work we report for the first time surface functionalization of 2D MoS2 with X (metals: Al, Cu, Sn, Ti) to develop a low-cost, ultra-selective biosensor array based Electronic Tongue (E-Tongue) for the detection of 4 vital neurological drugs in human saliva. The hydrothermally grown surface functionalized X-MoS2 was integrated onto a single 1 × 1 cm aluminium foil and contacts were defined using Cr electrodes. Detailed characterization revealed the formation of 2-H MoS2 and metal-X (Al, Cu, Sn, Ti)-functionalized MoS2 nanoflower like morphology decorated with nanoflake, nanorod, nanocube and nanostick structures, respectively. The response of the sensor array was recorded for aspirin, nicotine, caffeine and tramadol. Principal Component Analysis (PCA) was performed to reduce the dimension of numerous response data sets from all sensors and predict the likely possible response from various neurological drugs towards each sensor. Pattern-recognition analysis confirmed a definite pattern in response to respective functionalization and could efficiently differentiate neurological drugs from one another. Real-time analysis was performed using saliva samples for monitoring the therapeutic neurological drug concentration in the human body. Furthermore, the biosensor array was exposed to respective neurological drugs to study their sensitivity, selectivity, stability, reproducibility and adhesion onto the device. The strategy outlined can be used to develop lab-on-a-chip devices for the real-time detection of numerous bioanalytes in body fluids.


Subject(s)
Biosensing Techniques , Nanostructures , Pharmaceutical Preparations , Humans , Molybdenum , Reproducibility of Results , Titanium
17.
Front Chem ; 8: 337, 2020.
Article in English | MEDLINE | ID: mdl-32426327

ABSTRACT

Here we report a low-cost, flexible amperometric sensing platform for highly selective and sensitive detection of carbamazepine (CBZ) in human sweat samples. Detailed morphological characterization of the two-dimensional transition metal dichalcogenide NiSe2, synthesized using one-step hydrothermal method, confirms the formation of dense NiSe2 nanoclusters in the range of 500-650 nm, whereas X-ray diffraction and X-ray photoelectron spectroscopy studies reveal a stable and pure cubic crystalline phase of NiSe2. The sensor device is fabricated by uniformly depositing an optimized weight percentage of as-synthesized NiSe2 onto flexible and biocompatible polyimide substrate using spin coating, and metal contacts are established using thermal evaporation technique. The sensor exhibits a remarkable sensitivity of 65.65 µA/nM over a wide linear range of 50 nM to 10 µM CBZ concentrations and a low limit of detection of 18.2 nM. The sensing mechanism and excellent response of NiSe2 toward CBZ can be attributed to the highly conductive metallic NiSe2, large electroactive surface area of its nanoclusters, and highly interactive Ni2+/Ni3+ oxidation states. Furthermore, the presence of 10-fold excess of capable interferents, such as lactic acid, glucose, uric acid, and ascorbic acid, does not affect the accurate determination of CBZ, thus demonstrating excellent selectivity. The real-time detection of CBZ is evaluated in human sweat samples using standard addition method, which yields reliable results. Furthermore, the sensor shows excellent robustness when subject to bending cycles and fast response time of 2 s. The strategy outlined here is useful in developing sensing platforms at low potential without the use of enzymes or redox binders for applications in healthcare.

18.
Chem Commun (Camb) ; 56(52): 7096-7099, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32458870

ABSTRACT

We developed a novel hybrid red-black phosphorus/sulfonated porous carbon (R-BP/SPC) composite via a simple sonochemical process, which can be used as a high-performance supercapacitor electrode that delivers a high specific capacitance of 364.5 F g-1 at 0.5 A g-1 with excellent cycling stability of 89% after 10 000 cycles in comparison to the previously reported BP electrodes.

19.
Mater Sci Eng C Mater Biol Appl ; 112: 110865, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409035

ABSTRACT

We report a facile, one-step solid-state synthesis of aluminium ferrite (AFO) for simultaneous sensing of heavy metal ions (HMIs) namely cadmium (Cd2+), lead (Pb2+), copper (Cu2+) and mercury (Hg2+) in human blood serum. The nanoflake morphology and orthorhombic phase formation of the as-synthesised AFO were revealed through field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) pattern, respectively. The AFO modified glassy carbon electrode (AFO/GCE) exhibits distinct peak potentials for all HMIs with peak separation potential (ΔΕP) of 190 mV, 494 mV and 304 mV for Cd2+-Pb2+, Pb2+-Cu2+ and Cu2+-Hg2+, respectively. Low limits of detection (LOD) of values 1.5 nM, 4 nM, 1.6 nM and 0.5 nM were observed for Hg2+, Cd2+, Pb2+ and Cu2+, respectively which are well below the limits of unsafe concentrations of HMIs reported for human blood. The excellent sensitivity and low LOD can be attributed to the octahedral sites of the AFO perovskite structure with Fe2+/Fe3+ oxidation states which favours the delocalization of charge accumulations at the electrode surface. The sensor is successfully in determination of HMIs in simulated human blood serum using standard addition technique with an excellent recovery percentage. This strategy outlined here can be effectively used for developing various sensing platforms for bioanalytical applications.


Subject(s)
Cadmium/blood , Copper/blood , Electrochemical Techniques/methods , Ferric Compounds/chemistry , Lead/blood , Mercury/blood , Aluminum/chemistry , Cadmium/chemistry , Copper/chemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Lead/chemistry , Limit of Detection , Mercury/chemistry , Oxidation-Reduction , Reproducibility of Results
20.
Mater Sci Eng C Mater Biol Appl ; 111: 110806, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279735

ABSTRACT

We report a novel, facile hydrothermal synthesis of bismuth vanadate (BiVO4) nanoflakes coated with polyaniline (PANI) via electrodeposition on screen-printed carbon electrode (SPCE) for trace level detection of arsenic in biological samples. The crystallinity and monoclinic scheelite structure of as-synthesised BiVO4 nanoflakes was analysed using X-Ray diffraction (XRD) and the surface morphology and chemical analysis of the flake-like BiVO4 and PANI coated BiVO4 modified SPCE (PANI@BiVO4/SPCE) were studied using Field emission scanning electron microscopy (FESEM), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The presence of VO4 tetrahedra and VO43- group along with oxy-functional groups were confirmed using Raman and FTIR analysis, respectively. Under optimized conditions, the sensor could detect As3+ ions via differential pulse anodic stripping voltammetry (DPASV) technique with remarkable low limit of detection (LOD) of 0.0072 ppb (which is far below the MCL testified values) and exhibited a sensitivity of 6.06 µA ppb-1 cm-2 for a linear range of 0.01 to 300 ppb. This improved sensing aptitude can be ascribed to the synergetic effect of PANI and BiVO4 by providing high electrical conductivity and high electrocatalytic active sites via VO43- tetrahedra, respectively. The sensor showed an outstanding selectivity in detection of As3+ ions in trace levels in simulated blood serum samples with excellent recovery percentages thus making it an ideal platform to develop numerous electrochemical sensing platforms for bioanalytical applications.


Subject(s)
Aniline Compounds/chemistry , Arsenic/blood , Bismuth/classification , Carbon/chemistry , Electrochemical Techniques/methods , Vanadates/classification , Electrodes , Humans , Hydrogen-Ion Concentration , Ions , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...