Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(32): eadh0485, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37566664

ABSTRACT

Metabolomics, the study of metabolites (small molecules of <1500 daltons), has been posited as a potential tool to explore the past in a comparable manner to other omics, e.g., genomics or proteomics. Archaeologists have used metabolomic approaches for a decade or so, mainly applied to organic residues adhering to archaeological materials. Because of advances in sensitivity, resolution, and the increased availability of different analytical platforms, combined with the low mass/volume required for analysis, metabolomics is now becoming a more feasible choice in the archaeological sector. Additional approaches, as presented by our group, show the versatility of metabolomics as a source of knowledge about the human past when using human osteoarchaeological remains. There is tremendous potential for metabolomics within archaeology, but further efforts are required to position it as a routine technique.


Subject(s)
Archaeology , Metabolomics , Humans , Metabolomics/methods , Genomics , Proteomics
2.
Metabolites ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37233629

ABSTRACT

Metabolomic approaches, such as in clinical applications of living individuals, have shown potential use for solving questions regarding the past when applied to archaeological material. Here, we study for the first time the potential of this Omic approach as applied to metabolites extracted from archaeological human dentin. Dentin obtained from micro sampling the dental pulp of teeth of victims and non-victims of Yersinia pestis (plague) from a 6th century Cambridgeshire site are used to evaluate the potential use of such unique material for untargeted metabolomic studies on disease state through liquid chromatography hyphenated to high-resolution mass spectrometry (LC-HRMS). Results show that small molecules of both likely endogenous and exogenous sources are preserved for a range of polar and less polar/apolar metabolites in archaeological dentin; however, untargeted metabolomic profiles show no clear differentiation between healthy and infected individuals in the small sample analysed (n = 20). This study discusses the potential of dentin as a source of small molecules for metabolomic assays and highlights: (1) the need for follow up research to optimise sampling protocols, (2) the requirements of studies with larger sample numbers and (3) the necessity of more databases to amplify the positive results achievable with this Omic technique in the archaeological sciences.

3.
Sci Rep ; 13(1): 696, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639564

ABSTRACT

Metabolomics is a modern tool that aids in our understanding of the molecular changes in organisms. Archaeological science is a branch of archaeology that explores different archaeological materials using modern analytical tools. Human osteoarchaeological material are a frequent finding in archaeological contexts and have the potential to offer information about previous human populations, which can be illuminating about our current condition. Using a set of samples comprising different skeletal elements and bone structures, here we explore for the first time the possibility of extracting metabolites from osteoarchaeological material. Here, a protocol for extraction and measurement of extracted polar and less-polar/apolar metabolites by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry is presented to measure the molecules separated after a reversed phase and hydrophilic interaction liquid chromatography column. Molecular information was obtained, showing that osteoarchaeological material is a viable source of molecular information for metabolomic studies.


Subject(s)
Metabolomics , Humans , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Mass Spectrometry/methods , Hydrophobic and Hydrophilic Interactions
4.
J Colloid Interface Sci ; 576: 230-240, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32417684

ABSTRACT

HYPOTHESIS: Silk artifacts constitute a fundamental cultural and historical heritage, yet they are affected by degradation that alters the secondary structure of fibroin and weakens the mechanical properties of textiles, hindering their conservation. Feasible and compatible consolidants for silk are still widely needed. EXPERIMENTS: Here, we propose a robust and reliable method to restore the mechanical properties of fragile, aged silk fibers, based on the adhesion of self-regenerated silk fibroin (SRSF) with controlled crystallinity, prepared from waste silk, to the aged fibers. By varying the concentration of fibroin dispersions, the content of crystalline and amorphous domains in SRSF films can be tuned, as demonstrated by 2D micro-Fourier transform infrared spectroscopy Imaging and thermal analysis. FINDINGS: The presence of amorphous fibroin domains, distributed between the aged silk fibers, completely recovered their mechanical properties. Instead, the presence of domains with high content of ordered structures, distributed between the fibers, reduced their tensile strength and elongation length. The different mechanical behavior is likely due to the fact that adhesion of crystalline layers produces a brittle material, while amorphous layers with higher fibroin chain mobility increase ductility. The tunability of this treatment allows easy control of desired mechanical properties of degraded silk fibers, simply controlling the crystallinity Vs amorphousness of SRSF; these findings open up new perspectives in textile conservation, in the engineering of biomaterials and materials, and in the preparation of composite materials with enhanced properties.


Subject(s)
Fibroins , Biocompatible Materials , Regeneration , Silk , Spectroscopy, Fourier Transform Infrared , Tensile Strength
5.
Sci Rep ; 9(1): 17239, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754137

ABSTRACT

Silk artifacts constitute an invaluable heritage, and to preserve such patrimony it is necessary to correlate the degradation of silk fibroin with the presence of dyes, pollutants, manufacturing techniques, etc. Fourier Transform Infrared Spectroscopy with a Focal plane array detector (FPA FTIR) provides structural information at the micron scale. We characterized the distribution of secondary structures in silk fibers for a large set of South American historical textiles, coupling FTIR with multivariate statistical analysis to correlate the protein structure with the age of the samples and the presence of dyes. We found that the pressure applied during attenuated total reflectance (ATR) measurements might induce structural changes in the fibers, producing similar spectra for pristine and aged samples. Reflectance spectra were thus used for the rigorous characterization of secondary structures. Some correlation was highlighted between the age of the samples (spanning over five centuries) and specific changes in their secondary structure. A correlation was found between the color of the samples and structural alterations, in agreement with the chemical nature of the dyes. Overall, we demonstrated the efficacy of reflectance FPA µ-FTIR, combined with multivariate analysis, for the rigorous and non-invasive description of protein secondary structures on large sets of samples.

SELECTION OF CITATIONS
SEARCH DETAIL