Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Psychiatry Clin Pract ; 27(1): 1-7, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35357267

ABSTRACT

OBJECTIVES: It has been reported that matrix metalloproteinase, MMP-3 may play a significant role in the pathophysiology of mental disorders. However, there are no data on the level of MMP-3 in people suffering from schizophrenia, or its influence on the mental state of these people. The aim of this study was to investigate the effect of an antipsychotic treatment on the blood levels of MMP-3, as well as investigating its relationship with insight into schizophrenia. METHODS: Thirty people with schizophrenia were included in the study. The concentration of MMP-3 in the blood serum was assessed using enzyme-linked immunosorbent assay. Insight into the disease was assessed using the Beck Cognitive Insight Scale. RESULTS: The antipsychotic treatment applied decreased the levels of MMP-3 in patients with schizophrenia (p = 0.005), however, the statistically significant interaction (p = 0.02) indicates that the decrease only concerned men. There was also a statistically significant correlation between the level of MMP-3 and insight into the disease (p = 0.02). CONCLUSION: MMP-3 may be associated with gender, treatment and symptoms in schizophrenic patients.KEY POINTSMMP3 could be used as a potential biomarker for schizophrenia.The level of MMP-3 decreased due to the applied antipsychotic treatment.The higher the level of MMP-3 in a group of people with schizophrenia, the better insight into their disease.


Subject(s)
Antipsychotic Agents , Schizophrenia , Male , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Serum , Matrix Metalloproteinase 3/therapeutic use , Matrix Metalloproteinase 9 , Schizophrenia/drug therapy
2.
Plants (Basel) ; 11(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890511

ABSTRACT

Cyclotides are macrocycle peptides produced by plants from several families, including Violaceae. These compounds have the potential for applications in medicine, bioengineering and crop protection thanks to their multiple biological activities. In most cases, cyclotides are extracted from plant material. Plant cell culture provides a viable and sustainable form of plant biomass production Cyclotides are host defense peptides. The aim of the current study was to test whether different plant stress hormones and biological elicitors have effects on cyclotide production in Viola uliginosa suspension cultures. Different concentrations of jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA) and neutralized pathogens were tested. The cyclotide production was assessed using MALDI-MS. Five major peptides produced by V. uliginosa cultures were chosen for analysis, of which one was sequenced de novo. The treatments had little influence on the suspension's growth, with the exception of 100 µM SA, which enhanced the biomass increase, and 100 µM ABA, which was toxic. Significant increases in the production of three cyclotides (viul M, cyO13 and cyO3) were observed in suspensions primed with JA (50 µM, 100 µM, 200 µM) after 14 days of culturing. Biotic elicitors had no observable effect on cyclotide production. The current study indicates that some cyclotides in V. uliginosa are triggered in response to JA. The stress plant hormones can be used to enhance plant cell culture-based production systems.

3.
Sci Rep ; 12(1): 1914, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115562

ABSTRACT

Plants employ different chemicals to protect themselves from herbivory. These defenses may be constitutive or triggered by stress. The chemicals can be toxic, act as repellents, phagosuppressants and/or phago-deterrents. The two-spotted spider mite (Tetranychus urticae) is a generalist arthropod herbivorous pest and its feeding causes extensive damage both to crops and wild plants. Cyclotides are cyclic peptides involved in host-plant defenses. A single Viola sp. can produce more than a hundred cyclotides with different biological activities and roles. The organ and tissue specific cyclotide patterns change over the seasons and/or with environment, but the role of biotic/abiotic stress in shaping them remains unclear. Here, we demonstrate the involvement of cyclotides in mutual interactions between violets and mites. We used immunohistochemistry and mass spectrometry imaging to show the ingested cyclotides in T. urticae and assess the Viola odorata response to mite feeding. Moreover, to assess how mites are affected by feeding on violets, acceptance and reproductive performance was compared between Viola uliginosa, V. odorata and Phaseolus vulgaris. We demonstrate that cyclotides had been taken in by mites feeding on the violets. The ingested peptides were found in contact with epithelial cells of the mite digestive system, in the fecal matter, feces, ovary and eggs. Mites preferred common bean plants (P. vulgaris) to any of the violet species; the latter affected their reproductive performance. The production of particular cyclotides in V. odorata (denoted by molecular weights: 2979, 3001, 3017, 3068, 3084, 3123) was activated by mite feeding and their levels were significantly elevated compared to the control after 5 and 21 days of infestation. Specific cyclotides may affect mites by being indigestible or through direct interaction with cells in the mite digestive tract and reproductive organs. A group of particular peptides in V. odorata appears to be involved in defense response against herbivores.


Subject(s)
Cyclotides/metabolism , Herbivory , Phaseolus/parasitology , Tetranychidae/pathogenicity , Viola/parasitology , Animals , Digestion , Host-Parasite Interactions , Phaseolus/metabolism , Species Specificity , Tetranychidae/metabolism , Time Factors , Tissue Distribution , Viola/metabolism
4.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884599

ABSTRACT

Melanin is a black/brown pigment present in abundance in human skin. Its main function is photo-protection of underlying tissues from harmful UV light. Natural sources of isolated human melanin are limited; thus, in vitro cultures of human cells may be a promising source of human melanin. Here, we present an innovative in vitro differentiation protocol of induced pluripotent stem cells (iPS) into melanin-producing cells, delivering highly pigmented cells in quantity and quality incomparably higher than any other methods previously described. Pigmented cells constitute over 90% of a terminally differentiated population and exhibit features characteristic for melanocytes, i.e., expression of specific markers such as MITF-M (microphthalmia-associated transcription factor isoform M), TRP-1 (tyrosinase-related protein 1), and TYR (tyrosinase) and accumulation of black pigment in organelles closely resembling melanosomes. Black pigment is unambiguously identified as melanin with features corresponding to those of melanin produced by typical melanocytes. The advantage of our method is that it does not require any sophisticated procedures and can be conducted in standard laboratory conditions. Moreover, our protocol is highly reproducible and optimized to generate high-purity melanin-producing cells from iPS cells; thus, it can serve as an unlimited source of human melanin for modeling human skin diseases. We speculate that FGF-8 might play an important role during differentiation processes toward pigmented cells.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Melanins/biosynthesis , Melanocytes/cytology , Melanosomes/metabolism , Pigmentation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Melanocytes/metabolism
5.
Cells ; 10(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34440639

ABSTRACT

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


Subject(s)
Cell Differentiation , PAX7 Transcription Factor/metabolism , Rhabdomyosarcoma, Alveolar/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , PAX7 Transcription Factor/genetics , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/pathology , Signal Transduction , Tumor Burden
6.
Mol Ther Nucleic Acids ; 24: 888-904, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34094709

ABSTRACT

Rhabdomyosarcoma (RMS) is a soft tissue mesenchymal tumor that affects mostly children and adolescents. It originates from the impaired myogenic differentiation of stem cells or early progenitors. SNAIL, a transcription factor that regulates epithelial-to-mesenchymal transition in tumors of epithelial origin, is also a key regulator of RMS growth, progression, and myogenic differentiation. Here, we demonstrate that the SNAIL-dependent microRNAs (miRNAs) miR-28-3p and miR-193a-5p are crucial regulators of RMS growth, differentiation, and progression. miR-28-3p and miR-193a-5p diminished proliferation and arrested RMS cells in G0/G1 phase in vitro. They induced the myogenic differentiation of both RMS cells and human myoblasts by upregulating myogenic factors. Furthermore, miR-28-3p and miR-193a-5p inhibited migration in a scratch assay, adhesion to endothelial cells, chemotaxis, and invasion toward SDF-1 and HGF and regulated angiogenic capabilities of the cells. Overexpression of miR-28-3p and miR-193a-5p induced formation of fibrotic structures and abnormal blood vessels in RMS xenografts in immunodeficient mice in vivo. Simultaneous overexpression of both miRNAs diminished tumor growth after subcutaneous implantation and inhibited the engraftment of RMS cells into bone marrow after intravenous injection in vivo. To conclude, we discovered novel SNAIL-dependent miRNAs that may become new therapeutic targets in RMS in the future.

8.
Cereb Cortex ; 31(8): 3804-3819, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33739386

ABSTRACT

Information coding in the hippocampus relies on the interplay between various neuronal ensembles. We discovered that the application of a cholinergic agonist, carbachol (Cch), which triggers oscillatory activity in the gamma range, induces the activity of matrix metalloproteinase 9 (MMP-9)-an enzyme necessary for the maintenance of synaptic plasticity. Using electrophysiological recordings in hippocampal organotypic slices, we show that Cch potentiates the frequency of miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs, respectively) in CA1 neurons and this effect is MMP-9 dependent. Interestingly, though MMP-9 inhibition prevents the potentiation of inhibitory events, it further boosts the frequency of excitatory mEPSCs. Such enhancement of the frequency of excitatory events is a result of increased synaptogenesis onto CA1 neurons. Thus, the function of MMP-9 in cholinergically induced plasticity in the hippocampus is to maintain the fine-tuned balance between the excitatory and the inhibitory synaptic transmission.


Subject(s)
Hippocampus/drug effects , Hippocampus/growth & development , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology , Neurogenesis/drug effects , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/diagnostic imaging , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Neuronal Plasticity/drug effects , Patch-Clamp Techniques , Rats
9.
Plant Cell Rep ; 39(10): 1359-1367, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32719893

ABSTRACT

KEY MESSAGE: Turnover rates have implications for understanding cyclotide biology and improving plant cell culture-based production systems. Cyclotides are a family of polypeptides recognized for a broad spectrum of bioactivities. The cyclic, cystine knot structural motif imparts these peptides with resistance to temperature, chemicals and proteolysis. Cyclotides are found widely distributed across the Violaceae and in five other plant families, where their presumed biological role is host defense. Violets produce mixtures of different cyclotides that vary depending on the organ, tissue or influence of environmental factors. In the present study, we investigated the biosynthesis and turnover of cyclotides in plant cells. Viola uliginosa suspension cultures were grown in media where all nitrogen containing salts were replaced with their 15N counterparts. This approach combined with LC-MS analysis allowed to separately observe the production of 15N-labelled peptides and decomposition of 14N cyclotides present in the cells when switching the media. Additionally, we investigated changes in cyclotide content in V. odorata germinating seeds. In the suspension cultures, the degradation rates varied for individual cyclotides and the highest was noted for cyO13. Rapid increase in production of 15N peptides was observed until day 19 and subsequently, a plateau of production, indicating an equilibrium between biosynthesis and turnover. The developing seedling appeared to consume cyclotides present in the seed endosperm. We show that degradation processes shape the cyclotide pattern present in different tissues and environments. The results indicate that individual cyclotides play different roles-some in defense and others as storage proteins. The turnover of cyclotides should be accounted to improve cell culture production systems.


Subject(s)
Cyclotides/biosynthesis , Plant Cells/metabolism , Viola/metabolism , Amino Acid Sequence , Chromatography, Liquid , Cyclotides/chemistry , Endosperm/metabolism , Mass Spectrometry , Nitrogen Isotopes , Seedlings/metabolism
10.
Stem Cells Transl Med ; 9(10): 1174-1189, 2020 10.
Article in English | MEDLINE | ID: mdl-32573961

ABSTRACT

Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. This review presents modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.


Subject(s)
Combined Modality Therapy/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Nervous System Diseases/therapy , Animals , Humans , Nervous System Diseases/pathology , Rats
11.
Int J Cancer ; 147(4): 1117-1130, 2020 08 15.
Article in English | MEDLINE | ID: mdl-31863596

ABSTRACT

Targeting of the TRAIL-DR4/5 pathway was proposed as a promising approach for specific induction of apoptosis in cancer cells. Clinical trials, however, showed inadequate efficiency of TRAIL as a monotherapy. It is a widely held view that the application of multifunctional molecules or combination therapy may lead to substantial improvement. Here, we demonstrate the effectiveness and safety of a novel chimeric protein, AD-O51.4, which is a TRAIL equipped with positively charged VEGFA-derived effector peptides. The study was performed in multiple cancer cell line- and patient-derived xenografts. A pharmacokinetic profile was established in monkeys. AD-O51.4 strongly inhibits tumor growth, even leading to complete long-term tumor remission. Neither mice nor monkeys treated with AD-O51.4 demonstrate symptoms of drug toxicity. AD-O51.4 exhibits a satisfactory half-life in plasma and accumulates preferentially in tumors. The cellular mechanism of AD-O51.4 activity involves both cytotoxic effects in tumor cells and antiangiogenic effects on the endothelium. The presence of DRs in cancer cells is crucial for AD-O51.4-driven apoptosis execution. The TRAIL component of the fusion molecule serves as an apoptosis inducer and a cellular anchor for the effector peptides in TRAIL-sensitive and TRAIL-resistant cancer cells, respectively. The FADD-dependent pathway, however, seems to be not indispensable in death signal transduction; thus, AD-O51.4 is capable of bypassing the refractoriness of TRAIL. AD-O51.4-driven cell death, which exceeds TRAIL activity, is achieved due to the N-terminally fused polypeptide, containing VEGFA-derived effector peptides. The high anticancer efficiency of AD-O51.4 combined with its safety has led to the entry of AD-O51.4 into toxicological studies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Xenograft Model Antitumor Assays/methods , A549 Cells , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HCT116 Cells , HT29 Cells , Hep G2 Cells , Humans , Mice, SCID , Neoplasms/pathology , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Burden/drug effects
12.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013696

ABSTRACT

The properties of mesenchymal stem cells (MSCs), especially their self-renewal and ability to differentiate into different cell lines, are widely discussed. Considering the fact that MSCs isolated from perinatal tissues reveal higher differentiation capacity than most adult MSCs, we examined mesenchymal stem cells isolated from Wharton's jelly of umbilical cord (WJ-MSCs) in terms of pluripotency markers expression. Our studies showed that WJ-MSCs express some pluripotency markers-such as NANOG, OCT-4, and SSEA-4-but in comparison to iPS cells expression level is significantly lower. The level of expression can be raised under hypoxic conditions. Despite their high proliferation potential and ability to differentiate into different cells type, WJ-MSCs do not form tumors in vivo, the major caveat of iPS cells. Owing to their biological properties, high plasticity, proliferation capacity, and ease of isolation and culture, WJ-MSCs are turning out to be a promising tool of modern regenerative medicine.


Subject(s)
Cell Differentiation , Cell Self Renewal , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Wharton Jelly/cytology , Animals , Biomarkers , Cell Line , Cell Transformation, Neoplastic , Cells, Cultured , Female , Gene Expression Profiling , Humans , Immunophenotyping , Mice , Pregnancy , Transcriptome , Umbilical Cord
13.
Cell Death Dis ; 9(6): 643, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844345

ABSTRACT

Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.


Subject(s)
Cell Differentiation , MyoD Protein/metabolism , Myogenic Regulatory Factor 5/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/pathology , Snail Family Transcription Factors/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , DNA, Neoplasm/metabolism , Gene Expression Regulation, Neoplastic , Gene Silencing , Histone Deacetylases/metabolism , Humans , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle Development , Muscles/metabolism , Muscles/pathology , Phenotype , Up-Regulation/genetics , Xenograft Model Antitumor Assays
14.
Stem Cells Transl Med ; 7(1): 20-33, 2018 01.
Article in English | MEDLINE | ID: mdl-29224250

ABSTRACT

There is a need among patients suffering from drug-resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 109 ; intravenous: 0.38 × 109 -1.72 × 109 ) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 106 -40 × 106 ) every 3 months. The BMMSCs used were a unique population derived from CD271-positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow-up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. Stem Cells Translational Medicine 2018;7:20-33.


Subject(s)
Adapalene/metabolism , Bone Marrow Transplantation/adverse effects , Epilepsy/therapy , Mesenchymal Stem Cell Transplantation/adverse effects , Seizures/prevention & control , Bone Marrow Cells/cytology , Cell- and Tissue-Based Therapy/methods , Child , Child, Preschool , Female , Humans , Infant , Male , Mesenchymal Stem Cells/cytology , Pilot Projects , Treatment Outcome
15.
Stem Cells Transl Med ; 6(10): 1859-1867, 2017 10.
Article in English | MEDLINE | ID: mdl-28836732

ABSTRACT

Experimental and early clinical data suggest that, due to several unique properties, mesenchymal stem cells (MSCs) may be more effective than other cell types for diseases that are difficult to treat or untreatable. Owing to their ease of isolation and culture as well as their secretory and immunomodulatory abilities, MSCs are the most promising option in the field of cell-based therapies. Although MSCs from various sources share several common characteristics, they also exhibit several important differences. These variations may reflect, in part, specific regional properties of the niches from which the cells originate. Moreover, morphological and functional features of MSCs are susceptible to variations across isolation protocols and cell culture conditions. These observations suggest that careful preparation of manufacturing protocols will be necessary for the most efficient use of MSCs in future clinical trials. A typical human myocardial infarct involves the loss of approximately 1 billion cardiomyocytes and 2-3 billion other (mostly endothelial) myocardial cells, leading (despite maximized medical therapy) to a significant negative impact on the length and quality of life. Despite more than a decade of intensive research, search for the "best" (safe and maximally effective) cell type to drive myocardial regeneration continues. In this review, we summarize information about the most important features of MSCs and recent discoveries in the field of MSCs research, and describe current data from preclinical and early clinical studies on the use of MSCs in cardiovascular regeneration. Stem Cells Translational Medicine 2017;6:1859-1867.


Subject(s)
Cardiovascular Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Translational Research, Biomedical/methods , Animals , Humans , Mesenchymal Stem Cells/metabolism
16.
Int J Oncol ; 50(2): 597-605, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28035376

ABSTRACT

Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and young adulthood. Conventional treatment consisting of surgery, chemotherapy and radiotherapy can be insufficient, as long-term survival chances decrease dramatically when cancer recurrence occurs. Due to this fact, efficient treatment of this cancer is still a demanding issue, thus, novel and innovative therapies have to be considered as a part of combined treatment. In the present study, we present effective suicide gene therapy of rhabdomyosarcoma cell line Rh30 involving herpes simplex thymidine kinase (HSV-TK) and ganciclovir (GCV). Transduction of rhabdomyosarcoma cells using lentiviral vectors allowed efficient introduction of HSV-TK gene. In this study we proved high susceptibility of modified cells to ganciclovir resulting in eradication of cancer cells both in vitro and in vivo. Our data revealed strong gap junctional intercellular communication in examined cell line responsible for elimination of unmodified cells by bystander effect, even if HSV-TK-expressing cells comprise only 20% of cultured cells. Moreover, investigated approach is also efficient in vivo, where complete remission of tumors upon only 14 days of systemic administration of GCV can be observed. Obtained results suggest that HSV-TK suicide gene therapy is very promising concept in future clinical studies concerning rhabdomyosarcoma.


Subject(s)
Ganciclovir/administration & dosage , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Rhabdomyosarcoma/therapy , Simplexvirus/enzymology , Thymidine Kinase/genetics , Animals , Bystander Effect/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Ganciclovir/pharmacology , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Humans , Mice , Rhabdomyosarcoma/genetics , Simplexvirus/genetics , Xenograft Model Antitumor Assays
17.
Folia Med Cracov ; 55(4): 5-19, 2015.
Article in English | MEDLINE | ID: mdl-26867116

ABSTRACT

The current drug cardiac safety risk assessment paradigm is about to be changed. The discussed modifications cover clinical as well as pre-clinical sides. As for the latter, the pre-clinical assessment, it is planned to be based on the analysis of the drug-triggered multiple ion currents inhibition. Considering the variability in the in vitro patch clamp studies results, it would be of benefit to assess how these apparatus- and protocol-dependent differences influence the risk prediction and, eventually, the decision making. Four compounds, namely dextromethorphan, ketoconazole, terfenadine, and quinidine were screened for hERG inhibition with an automated patch clamp apparatus (CytoPatch(TM)2). The results were then compared against the literature published data, and after being complemented with information about other current inhibitions and effective therapeutic plasma concentration, utilized for the in silico based safety assessment. Two endpoints were used: (1) the concentration dependent potential to induce early afterdepolarizations in the simulated action potential and (2) the arrhythmia-like disruption in the simulated pseudo-ECG signals. Data analysis results prove that IC50 values, describing the inhibition potential, significantly differ among studies, and the choice of input data can greatly influence the in silico based safety assessment and thus the decision making process.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/pharmacology , Ether-A-Go-Go Potassium Channels/drug effects , Models, Cardiovascular , Animals , Arrhythmias, Cardiac/chemically induced , Dextromethorphan/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel , In Vitro Techniques , Ketoconazole/pharmacology , Patch-Clamp Techniques/methods , Pilot Projects , Quinidine/pharmacology , Terfenadine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...