Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(14): 7110-7122, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38501279

ABSTRACT

This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.


Subject(s)
Lung Neoplasms , Metal Nanoparticles , Humans , X-Rays , Gold/pharmacology , Computer Simulation , Monte Carlo Method
2.
Small ; 20(19): e2310873, 2024 May.
Article in English | MEDLINE | ID: mdl-38279618

ABSTRACT

Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.


Subject(s)
Ferroptosis , Nanoparticles , Ferroptosis/drug effects , Humans , Nanoparticles/chemistry , Animals , X-Rays , Cell Line, Tumor , Mice , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Combined Modality Therapy
3.
Microbiol Immunol ; 67(1): 44-47, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36259144

ABSTRACT

The reverse genetics system is a very powerful tool for analyzing the molecular mechanisms of viral propagation and pathogenesis. However, full-length genome plasmid construction is highly time-consuming and laborious, and undesired mutations may be introduced by Escherichia coli. This study shows a very rapid E. coli-free method of full-genome construction using the mumps virus as an example. This method was able to reduce dramatically the time for full-genome construction, which was used very efficiently for virus rescue, from several days or more to ~2 days, with a similar accuracy and yield to the conventional method using E. coli/plasmid.


Subject(s)
Mumps virus , Reverse Genetics , Mumps virus/genetics , Reverse Genetics/methods , Plasmids/genetics , Genome, Viral , Genes, Viral , Escherichia coli/genetics , Cloning, Molecular
4.
PLoS Pathog ; 18(12): e1010949, 2022 12.
Article in English | MEDLINE | ID: mdl-36480520

ABSTRACT

Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.


Subject(s)
SNARE Proteins , Viral Fusion Proteins , Viral Fusion Proteins/genetics
5.
Mater Today Bio ; 17: 100457, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36388450

ABSTRACT

Ferroptosis, a cell death pathway that is induced in response to iron, has recently attracted remarkable attention given its emerging therapeutic potential in cancer cells. The need for a promising modality to improve chemotherapy's efficacy through this pathway has been urgent in recent years, and this non-apoptotic cell death pathway accumulates reactive oxygen species (ROS) and is subsequently involved in lipid peroxidation. Here, we report cancer-targeting nanoparticles that possess highly efficient cancer-targeting ability and minimal systemic toxicity, thereby leading to ferroptosis. To overcome the limit of actual clinical application, which is the ultimate goal due to safety issues, we designed safe nanoparticles that can be applied clinically. Nanoparticles containing ferroptosis-dependent iron and FDA-approved hyaluronic acid (FHA NPs) are fabricated by controlling physicochemical properties, and the FHA NPs specifically induce ROS production and lipid peroxidation in cancer cells without affecting normal cells. The excellent in vivo anti-tumor therapeutic effect of FHA NPs was confirmed in the A549 tumor-bearing mice model, indicating that the induction of FHA NP-mediated cell death via the ferroptosis pathway could serve as a powerful platform in anticancer therapy. We believe that this newly proposed FHA NP-induced ferroptosis strategy is a promising system that offers the potential for efficient cancer treatment and provides insight into the safe design of nanomedicines for clinical applications.

6.
Stem Cell Res Ther ; 10(1): 51, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30732645

ABSTRACT

Mesenchymal stem cell (MSC) encapsulation technique has long been emerged in tissue engineering as it plays an important role in implantation of stem cells to regenerate a damaged tissue. MSC encapsulation provides a mimic of a three-dimensional (3D) in vivo environment to maintain cell viability and to induce the stem cell differentiation which regulates MSC fate into multi-lineages. Moreover, the 3D matrix surrounding MSCs protects them from the human innate immune system and allows the diffusion of biomolecules such as oxygen, cytokines, and growth factors. Therefore, many technologies are being developed to create MSC encapsulation platforms with diverse materials, shapes, and sizes. The conditions of the platform are determined by the targeted tissue and translation method. This review introduces several details of MSC encapsulation technologies such as micromolding, electrostatic droplet extrusion, microfluidics, and bioprinting and their application for tissue regeneration. Lastly, some of the challenges and future direction of MSC encapsulation technologies as a cell therapy-based tissue regeneration method will be discussed.


Subject(s)
Biomimetics/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Tissue Engineering/methods , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...