Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(15): 10653-10661, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567327

ABSTRACT

Self-reporting systems automatically indicate damaged or corroded surfaces via color changes or fluorescence. In this study, a novel reusable self-reporting system is developed by exploiting the reversibility of a donor-acceptor Stenhouse adduct (DASA). The synthesized DASA precursor exhibits a color change when damaged upon reaction with diethylamine, and returns to its colorless form upon irradiation with visible light. Microcapsules are synthesized with a core comprising styrene and the DASA precursor, along with a shell formed of urea and formaldehyde. The optimal particle size and shell thickness of the microcapsules are 225 µm and 0.17 µm, respectively. The DASA precursor-containing microcapsules are embedded in a PEG gel matrix with secondary amine groups. This coating system, initially colorless, exhibits a color change, becoming pink after being damaged by scratching due to the reaction between the DASA precursor released from ruptured microcapsules with the secondary amine groups of the PEG gel, thus demonstrating self-reporting characteristics. Furthermore, the colored surface is restored to its initial colorless state by irradiation with visible light for 1.5 hours, demonstrating the reusability of the self-reporting system.

2.
Molecules ; 28(9)2023 04 29.
Article in English | MEDLINE | ID: mdl-37175223

ABSTRACT

Wastewater management is of considerable economic and environmental importance for the dyeing industry. Digital textile printing (DTP), which is based on sublimation transfer and does not generate wastewater, is currently being explored as an inkjet-based method of printing colorants onto fabric. It finds wide industrial applications with most poly(ethylene terephthalate) (PET) and nylon fibers. However, for additional industrial applications, it is necessary to use natural fibers, such as cotton. Therefore, to expand the applicability of DTP, it is essential to develop a novel reactive disperse dye that can interact with the fabric. In this study, we introduced a blocked isocyanate functional group into the dye to enhance binding to the fabric. The effect of sublimation transfer on fabrics as a function of temperature was compared using the newly synthesized reactive disperse dyes with different blocking groups based on pyrazole derivatives, such as pyrazole (Py), di-methylpyrazole (DMPy), and di-tert-butylpyrazole (DtBPy). Fabrics coated with the new reactive disperse dyes, including PET, nylon, and cotton, were printed at 190 °C, 200 °C, and 210 °C using thermal transfer equipment. In the case of the synthesized DHP-A dye on cotton at 210 °C, the color strength was 2.1, which was higher than that of commercial dyes and other synthesized dyes, such as DMP-A and DTP-A. The fastness values of the synthesized DHP-A were measured on cotton, and it was found that the washing and light fastness values on cotton are higher than those of commercial dyes. This study confirmed the possibility of introducing isocyanate groups into reactive disperse dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...