Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e19473, 2022. tab, graf
Article in English | LILACS | ID: biblio-1384023

ABSTRACT

Abstract RGX-365 is the main fraction of black ginseng conmprising protopanaxatriol (PPT)-type rare ginsenosides (ginsenosides Rg4, Rg6, Rh4, Rh1, and Rg2). No studies on the antiseptic activity of RGX-365 have been reported. High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. In this study, we examined the effects of RGX-365 on HMGB1-mediated septic responses and survival rate in a mouse sepsis model. RGX-365 was administered to the mice after HMGB1 challenge. The antiseptic activity of RGX-365 was assessed based on the production of HMGB1, measurement of permeability, and septic mouse mortality using a cecal ligation and puncture (CLP)-induced sepsis mouse model and HMGB1-activated human umbilical vein endothelial cells (HUVECs). We found that RGX-365 significantly reduced HMGB1 release from LPS- activated HUVECs and CLP-induced release of HMGB1 in mice. RGX-365 also restored HMGB1-mediated vascular disruption and inhibited hyperpermeability in the mice. In addition, treatment with RGX-365 reduced sepsis-related mortality in vivo. Our results suggest that RGX- 365 reduces HMGB1 release and septic mortality in vivo, indicating that it is useful in the treatment of sepsis.


Subject(s)
HMGB1 Protein/analysis , Panax/adverse effects , Permeability , Sepsis/pathology , Ginsenosides , Human Umbilical Vein Endothelial Cells/classification , Anti-Infective Agents, Local/adverse effects
2.
Braz. J. Pharm. Sci. (Online) ; 56: e18636, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132060

ABSTRACT

This study was initiated to determine whether 2 structurally related flavonoids found in Cyclopia subternata-vicenin-2 (VCN) and scolymoside (SCL)-could modulate renal functional damage in a mouse model of sepsis, and to elucidate the relevant underlying mechanisms. The potential of VCN and SCL treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured via assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with either VCN or SCL resulted in elevated plasma levels of BUN and creatinine, and of protein in the urine of mice with CLP-induced renal damage. Moreover, both VCN and SCL inhibited nuclear factor κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. VCN and SCL treatment also reduced the plasma levels of interleukin-6, and tumor necrosis factor-α, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. The present results suggest that VCN and SCL protect mice from sepsis-triggered renal injury


Subject(s)
Animals , Male , Mice , Flavonoids , Antioxidants/analysis , Wounds and Injuries/classification , Blood Urea Nitrogen , Catalase/adverse effects , Tumor Necrosis Factor-alpha , Sepsis/chemically induced , Nitric Oxide Synthase/pharmacology , Creatinine , Kidney
3.
Protein Sci ; 17(1): 146-53, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18042685

ABSTRACT

Ixolaris is a two-Kunitz tick salivary gland tissue factor pathway inhibitor (TFPI). In contrast to human TFPI, Ixolaris specifically binds to factor Xa (FXa) heparin-binding exosite (HBE). In addition, Ixolaris interacts with zymogen FX. In the present work we characterized the interaction of Ixolaris with human FX quantitatively, and identified a precursor state of the heparin-binding exosite (proexosite, HBPE) as the Ixolaris-binding site on the zymogen. Gel-filtration chromatography demonstrated 1:1 complex formation between fluorescein-labeled Ixolaris and FX. Isothermal titration calorimetry confirmed that the binding of Ixolaris to FX occurs at stoichiometric concentrations in a reaction which is characteristically exothermic, with a favorable enthalpy (DeltaH) of -10.78 kcal/mol. ELISA and plasmon resonance experiments also indicate that Ixolaris binds to plasma FX and FXa, or to recombinant Gla domain-containing FX/FXa with comparable affinities ( approximately 1 nM). Using a series of mutants on the HBPE, we identified the most important amino acids involved in zymogen/Ixolaris interaction-Arg-93 >>> Arg-165 > or = Lys-169 > Lys-236 > Arg-125-which was identical to that observed for FXa/Ixolaris interaction. Remarkably, Ixolaris strongly inhibited FX activation by factor IXa in the presence but not in the absence of factor VIIIa, suggesting a specific interference in the cofactor activity. Further, solid phase assays demonstrated that Ixolaris inhibits FX interaction with immobilized FVIIIa. Altogether, Ixolaris is the first inhibitor characterized to date that specifically binds to FX HBPE. Ixolaris may be a useful tool to study the physiological role of the FX HBPE and to evaluate this domain as a target for anticoagulant drugs.


Subject(s)
Factor X/chemistry , Factor X/metabolism , Factor Xa/metabolism , Heparin/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism , Animals , Binding Sites , Calorimetry , Chromatography, Gel , Factor VIIa/metabolism , Heparin/chemistry , Humans , Kinetics , Protein Binding , Ticks
SELECTION OF CITATIONS
SEARCH DETAIL