Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Chem Biol ; 30(11): 1414-1420.e5, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37567174

ABSTRACT

Chemically induced protein degradation is a powerful strategy for perturbing cellular biochemistry. The predominant mechanism of action for protein degrader drugs involves an induced proximity between the cellular ubiquitin-conjugation machinery and a target. Unlike traditional small molecule enzyme inhibition, targeted protein degradation can clear an undesired protein from cells. We demonstrate here the use of peptide ligands for Kelch-like homology domain-containing protein 2 (KLHDC2), a substrate adapter protein and member of the cullin-2 (CUL2) ubiquitin ligase complex, for targeted protein degradation. Peptide-based bivalent compounds that can induce proximity between KLHDC2 and target proteins cause degradation of the targeted factors. The cellular activity of these compounds depends on KLHDC2 binding. This work demonstrates the utility of KLHDC2 for targeted protein degradation and exemplifies a strategy for the rational design of peptide-based ligands useful for this purpose.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Proteolysis , Adaptor Proteins, Signal Transducing
2.
J Cachexia Sarcopenia Muscle ; 14(5): 2239-2252, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37559423

ABSTRACT

BACKGROUND: The functional deterioration and loss of motor neurons are tightly associated with degenerative motor neuron diseases and aging-related muscle wasting. Motor neuron diseases or aging-related muscle wasting in turn contribute to increased risk of adverse health outcomes in the elderly. Cdon (cell adhesion molecule-downregulated oncogene) belongs to the immunoglobulin superfamily of cell adhesion molecule and plays essential roles in multiple signalling pathways, including sonic hedgehog (Shh), netrin, and cadherin-mediated signalling. Cdon as a Shh coreceptor plays a critical role in motor neuron specification during embryonic development. However, its role in adult motor neuron function is unknown. METHODS: Hb9-Cre recombinase-driven motor neuron-specific Cdon deficient mice (mnKO) and a compound mutant mice (mnKO::SOD1G93A ) were generated to investigate the role of Cdon in motor neuron degeneration. Motor neuron regeneration was examined by using a sciatic nerve crush injury model. To investigate the phenotype, physical activity, compound muscle action potential, immunostaining, and transmission electron microscopy were carried out. In the mechanism study, RNA sequencing and RNA/protein analyses were employed. RESULTS: Mice lacking Cdon in motor neurons exhibited middle age onset lethality and aging-related decline in motor function. In the sciatic nerve crush injury model, mnKO mice exhibited an impairment in motor function recovery evident by prolonged compound muscle action potential duration (4.63 ± 0.35 vs. 3.93 ± 0.22 s for f/f, P < 0.01) and physical activity. Consistently, neuromuscular junctions of mnKO muscles were incompletely occupied (49.79 ± 5.74 vs. 79.39 ± 3.77% fully occupied neuromuscular junctions for f/f, P < 0.0001), suggesting an impaired reinnervation. The transmission electron microscopy analysis revealed that mnKO sciatic nerves had smaller axon diameter (0.88 ± 0.13 vs. 1.43 ± 0.48 µm for f/f, P < 0.0001) and myelination defects. RNA sequencing of mnKO lumbar spinal cords showed alteration in genes related to neurogenesis, inflammation and cell death. Among the altered genes, ErbB4 and FgfR expressions were significantly altered in mnKO as well as in Cdon-depleted NSC34 motor neuron cells. Consistently, Cdon-depleted NSC34 cells exhibited elevated levels of cleaved Caspase3 and γH2AX proteins, as well as Bax transcription. Cdon-depleted NSC34 cells also exhibited impaired activation of Akt in response to neuregulin-1 (NRG1) treatment. CONCLUSIONS: Our current data demonstrate the functional importance of Cdon in motor neuron function and nerve repair. Cdon ablation causes alterations in neurotrophin signalling that leads to motor neuron degeneration.

3.
Sci Transl Med ; 15(711): eabh3489, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37647389

ABSTRACT

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis. Reduced PGC-1α abundance is linked to skeletal muscle weakness in aging or pathological conditions, such as neurodegenerative diseases and diabetes; thus, elevating PGC-1α abundance might be a promising strategy to treat muscle aging. Here, we performed high-throughput screening and identified a natural compound, farnesol, as a potent inducer of PGC-1α. Farnesol administration enhanced oxidative muscle capacity and muscle strength, leading to metabolic rejuvenation in aged mice. Moreover, farnesol treatment accelerated the recovery of muscle injury associated with enhanced muscle stem cell function. The protein expression of Parkin-interacting substrate (PARIS/Zfp746), a transcriptional repressor of PGC-1α, was elevated in aged muscles, likely contributing to PGC-1α reduction. The beneficial effect of farnesol on aged muscle was mediated through enhanced PARIS farnesylation, thereby relieving PARIS-mediated PGC-1α suppression. Furthermore, short-term exercise increased PARIS farnesylation in the muscles of young and aged mice, whereas long-term exercise decreased PARIS expression in the muscles of aged mice, leading to the elevation of PGC-1α. Collectively, the current study demonstrated that the PARIS-PGC-1α pathway is linked to muscle aging and that farnesol treatment can restore muscle functionality in aged mice through increased farnesylation of PARIS.


Subject(s)
Farnesol , Muscle Weakness , Animals , Mice , Farnesol/pharmacology , Aging , Prenylation , Ubiquitin-Protein Ligases
4.
BMB Rep ; 56(7): 404-409, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37220908

ABSTRACT

This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis. [BMB Reports 2023; 56(7): 404-409].


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Animals , Mice , Gastrointestinal Microbiome/physiology , Cachexia , Disease Models, Animal , Fatty Acids, Volatile/analysis , Butyrates , Neoplasms/complications
5.
Cell Mol Life Sci ; 79(2): 99, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35089423

ABSTRACT

Angiotensin II (AngII) has potent cardiac hypertrophic effects mediated through activation of hypertrophic signaling like Wnt/ß-Catenin signaling. In the current study, we examined the role of protein arginine methyltransferase 7 (PRMT7) in cardiac function. PRMT7 was greatly decreased in hypertrophic hearts chronically infused with AngII and cardiomyocytes treated with AngII. PRMT7 depletion in rat cardiomyocytes resulted in hypertrophic responses. Consistently, mice lacking PRMT7 exhibited the cardiac hypertrophy and fibrosis. PRMT7 overexpression abrogated the cellular hypertrophy elicited by AngII, while PRMT7 depletion exacerbated the hypertrophic response caused by AngII. Similar with AngII treatment, the cardiac transcriptome analysis of PRMT7-deficient hearts revealed the alteration in gene expression profile related to Wnt signaling pathway. Inhibition of PRMT7 by gene deletion or an inhibitor treatment enhanced the activity of ß-catenin. PRMT7 deficiency decreases symmetric dimethylation of ß-catenin. Mechanistic studies reveal that methylation of arginine residue 93 in ß-catenin decreases the activity of ß-catenin. Taken together, our data suggest that PRMT7 is important for normal cardiac function through suppression of ß-catenin activity.


Subject(s)
Cardiomegaly/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein-Arginine N-Methyltransferases/genetics , beta Catenin/genetics , Angiotensins , Animals , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis , Gene Expression Profiling/methods , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardium/pathology , Protein-Arginine N-Methyltransferases/deficiency , RNA-Seq/methods , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
6.
Urol Oncol ; 40(3): 105.e1-105.e10, 2022 03.
Article in English | MEDLINE | ID: mdl-34952790

ABSTRACT

Prostate cancer (CaP) is the most common malignant neoplasm of the urinary tract. The current recommendations for CaP diagnosis rely on the prostate-specific antigen levels and a digital rectal examination for anatomical abnormalities. However, these diagnostic tools are not highly sensitive. In particular, prostate-specific antigen has a low positive predictive value (approximately 30%). Thus, there is a need to develop biomarkers to improve the early clinical detection of CaP. Several novel technologies enable the identification of biomarkers from diverse sources, including the urine, serum, and prostate tissues. Furthermore, advances in genomic techniques have enabled the analysis of novel biomarkers, such as deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs), proteins, and circulating tumor cells. Previous studies have demonstrated that RNAs are potential diagnostic biomarkers for various cancers using high-throughput sequencing analysis. The sensitivity and specificity of RNA biomarkers are higher than those of protein biomarkers. Polymerase chain reaction enables the amplification of trace levels of RNAs with high sensitivity and specificity. RNA biomarkers provide dynamic insights into cellular states and regulatory processes when compared with DNA biomarkers. Additionally, multiple copies of various RNAs in a cell provide more information than DNA. The levels of specific RNAs in CaP tissues are upregulated when compared with those in non-cancerous tissues. Additionally, RNAs can be easily isolated from various body fluids. Thus, RNAs are potential non-invasive biomarkers for CaP. Moreover, the analysis of RNA levels adjusted for each stage of CaP enables the determination of prognostic individualized therapy for aggressive or progressive CaP. This review focused on the diagnostic and prognostic values of RNAs for CaP.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Biomarkers, Tumor/analysis , DNA , Humans , Male , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , RNA
8.
Cell Death Dis ; 11(5): 359, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398756

ABSTRACT

Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson's disease. In this study, we investigated the role of PARIS in myoblast function. PARIS is expressed in myoblasts and decreased during differentiation. PARIS overexpression decreased both proliferation and differentiation of myoblasts without inducing cell death, whereas PARIS depletion enhanced myoblast differentiation. Interestingly, high levels of PARIS in myoblasts or fibroblasts induced cellular senescence with alterations in gene expression associated with p53 signaling, inflammation, and response to oxidative stress. PARIS overexpression in myoblasts starkly enhanced oxidative stress and the treatment of an antioxidant Trolox attenuated the impaired proliferation caused by PARIS overexpression. FoxO1 and p53 proteins are elevated in PARIS-overexpressing cells leading to p21 induction and the depletion of FoxO1 or p53 reduced p21 levels induced by PARIS overexpression. Furthermore, both PARIS and FoxO1 were recruited to p21 promoter region and Trolox treatment attenuated FoxO1 recruitment. Taken together, PARIS upregulation causes oxidative stress-related FoxO1 and p53 activation leading to p21 induction and cellular senescence of myoblasts.


Subject(s)
Forkhead Box Protein O1/metabolism , Myoblasts/metabolism , Oxidative Stress/physiology , Repressor Proteins/metabolism , Aging/physiology , Animals , Antioxidants/metabolism , Cell Differentiation/genetics , Cellular Senescence/physiology , Humans , Mice , Tumor Suppressor Protein p53/metabolism
9.
J Cachexia Sarcopenia Muscle ; 11(4): 1089-1103, 2020 08.
Article in English | MEDLINE | ID: mdl-32103583

ABSTRACT

BACKGROUND: Perturbation in cell adhesion and growth factor signalling in satellite cells results in decreased muscle regenerative capacity. Cdon (also called Cdo) is a component of cell adhesion complexes implicated in myogenic differentiation, but its role in muscle regeneration remains to be determined. METHODS: We generated inducible satellite cell-specific Cdon ablation in mice by utilizing a conditional Cdon allele and Pax7 CreERT2 . To induce Cdon ablation, mice were intraperitoneally injected with tamoxifen (tmx). Using cardiotoxin-induced muscle injury, the effect of Cdon depletion on satellite cell function was examined by histochemistry, immunostaining, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Isolated myofibers or myoblasts were utilized to determine stem cell function and senescence. To determine pathways related to Cdon deletion, injured muscles were subjected to RNA sequencing analysis. RESULTS: Satellite cell-specific Cdon ablation causes impaired muscle regeneration with fibrosis, likely attributable to decreased proliferation, and senescence, of satellite cells. Cultured Cdon-depleted myofibers exhibited 32 ± 9.6% of EdU-positive satellite cells compared with 58 ± 4.4% satellite cells in control myofibers (P < 0.05). About 32.5 ± 3.7% Cdon-ablated myoblasts were positive for senescence-associated ß-galactosidase (SA-ß-gal) while only 3.6 ± 0.5% of control satellite cells were positive (P < 0.001). Transcriptome analysis of muscles at post-injury Day 4 revealed alterations in genes related to mitogen-activated protein kinase signalling (P < 8.29 e-5 ) and extracellular matrix (P < 2.65 e-24 ). Consistent with this, Cdon-depleted tibialis anterior muscles had reduced phosphorylated extracellular signal-regulated kinase (p-ERK) protein levels and expression of ERK targets, such as Fos (0.23-fold) and Egr1 (0.31-fold), relative to mock-treated control muscles (P < 0.001). Cdon-depleted myoblasts exhibited impaired ERK activation in response to basic fibroblast growth factor. Cdon ablation resulted in decreased and/or mislocalized integrin ß1 activation in satellite cells (weak or mislocalized integrin1 in tmx = 38.7 ± 1.9%, mock = 21.5 ± 6%, P < 0.05), previously linked with reduced fibroblast growth factor (FGF) responsiveness in aged satellite cells. In mechanistic studies, Cdon interacted with and regulated cell surface localization of FGFR1 and FGFR4, likely contributing to FGF responsiveness of satellite cells. Satellite cells from a progeria model, Zmpste24-/- myofibers, showed decreased Cdon levels (Cdon-positive cells in Zmpste24-/- = 63.3 ± 11%, wild type = 90 ± 7.7%, P < 0.05) and integrin ß1 activation (weak or mislocalized integrin ß1 in Zmpste24-/- = 64 ± 6.9%, wild type = 17.4 ± 5.9%, P < 0.01). CONCLUSIONS: Cdon deficiency in satellite cells causes impaired proliferation of satellite cells and muscle regeneration via aberrant integrin and FGFR signalling.


Subject(s)
Cell Adhesion Molecules/metabolism , Muscle, Skeletal/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Differentiation , Humans , Mice , Regeneration , Signal Transduction
10.
Biochem Biophys Res Commun ; 517(3): 484-490, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31371025

ABSTRACT

Obesity that is critically correlated with the initiation and development of metabolic syndrome and cardiovascular diseases has increased worldwide. Adipogenesis is coordinated through multi-steps involving adipogenic commitment, mitotic clonal expansion (MCE) and differentiation. Recently, protein arginine methyltransferase 4 (PRMT4) and PRMT5 have been implicated in modulation of adipogenesis via regulation of C/EBP-ß activity or PPAR-γ2 expression. In the current study, we demonstrate a suppressive role of PRMT7 in adipogenesis. PRMT7-depleted preadipocytes or PRMT7-/- mouse embryonic fibroblasts (MEFs) displayed increased adipogenesis while PRMT7 overexpression attenuated it. PRMT7 depletion in preadipocytes promoted MCE, an initial step of adipogenesis. Furthermore, we found that PRMT7 interacted with and methylated a key adipogenic factor C/EBP-ß upon adipogenic induction and modulated the accumulation of C/EBP-ß at its target sites in the PPAR-γ2 promoter. Taken together, our data suggest that PRMT7 suppresses adipogenesis through modulation of C/EBP-ß activity.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , PPAR gamma/genetics , Protein-Arginine N-Methyltransferases/genetics , 3T3-L1 Cells , Adipocytes/cytology , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Cell Proliferation/genetics , Cell Survival/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Methylation , Mice , Models, Biological , Obesity/genetics , Obesity/metabolism , Obesity/pathology , PPAR gamma/metabolism , Promoter Regions, Genetic , Protein Binding , Protein-Arginine N-Methyltransferases/deficiency , Signal Transduction
11.
PLoS One ; 9(11): e111701, 2014.
Article in English | MEDLINE | ID: mdl-25369201

ABSTRACT

Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.


Subject(s)
Carcinogenesis/metabolism , Cell Adhesion Molecules/physiology , Cell Proliferation , Hedgehog Proteins/physiology , Lung Neoplasms/metabolism , Tumor Suppressor Proteins/physiology , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Female , Humans , Lung Neoplasms/pathology , Mice, Nude , Neoplasm Staging , Neoplasm Transplantation , Signal Transduction , Transcription Factors/metabolism , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL
...