Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Rev Cancer ; 24(9): 614-628, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39048767

ABSTRACT

Adoptive cell therapies engineered to express chimeric antigen receptors (CARs) or transgenic T cell receptors (TCRs) to recognize and eliminate cancer cells have emerged as a promising approach for achieving long-term remissions in patients with cancer. To be effective, the engineered cells must persist at therapeutically relevant levels while avoiding off-tumour toxicities, which has been challenging to realize outside of B cell and plasma cell malignancies. This Review discusses concepts to enhance the efficacy, safety and accessibility of cellular immunotherapies by endowing cells with selective resistance to small-molecule drugs or antibody-based therapies to facilitate combination therapies with substances that would otherwise interfere with the functionality of the effector cells. We further explore the utility of engineering healthy haematopoietic stem cells to confer resistance to antigen-directed immunotherapies and small-molecule targeted therapies to expand the therapeutic index of said targeted anticancer agents as well as to facilitate in vivo selection of gene-edited haematopoietic stem cells for non-malignant applications. Lastly, we discuss approaches to evade immune rejection, which may be required in the setting of allogeneic cell therapies. Increasing confidence in the tools and outcomes of genetically modified cell therapy now paves the way for rational combinations that will open new therapeutic horizons.


Subject(s)
Drug Resistance, Neoplasm , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Hematopoietic Stem Cells/immunology , Immunotherapy/methods
2.
bioRxiv ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38370721

ABSTRACT

Cellular senescence is a major driver of aging and disease. Here we show that substrate stiffness modulates the emergence and magnitude of senescence phenotypes after exposure to senescence inducers. Using a primary dermal fibroblast model, we show that decreased substrate stiffness accelerates senescence-associated cell-cycle arrest and regulates the expression of conventional protein-based biomarkers of senescence. We found that the expression of these senescence biomarkers, namely p21WAF1/CIP1 and p16INK4a are mechanosensitive and are in-part regulated by myosin contractility through focal adhesion kinase (FAK)-ROCK signaling. Interestingly, at the protein level senescence-induced dermal fibroblasts on soft substrates (0.5 kPa) do not express p21WAF1/CIP1 and p16INK4a at comparable levels to induced cells on stiff substrates (4GPa). However, cells express CDKN1a, CDKN2a, and IL6 at the RNA level across both stiff and soft substrates. Moreover, when cells are transferred from soft to stiff substrates, senescent cells recover an elevated expression of p21WAF1/CIP1 and p16INK4a at levels comparable to senescence cells on stiff substrates, pointing to a mechanosensitive regulation of the senescence phenotype. Together, our results indicate that the emergent senescence phenotype depends critically on the local mechanical environments of cells and that senescent cells actively respond to changing mechanical cues.

SELECTION OF CITATIONS
SEARCH DETAIL