Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Infect Dis ; 122: 136-143, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35598737

ABSTRACT

OBJECTIVES: We used whole-genome sequencing of SARS-CoV-2 to identify variants circulating in the Democratic Republic of the Congo and obtain molecular information useful for diagnosis, improving treatment, and general pandemic control strategies. METHODS: A total of 74 SARS-CoV-2 isolates were sequenced using Oxford Nanopore platforms. Generated reads were processed to obtain consensus genome sequences. Sequences with more than 80% genome coverage were used for variant calling, phylogenetic analysis, and classification using Pangolin lineage annotation nomenclature. RESULTS: Phylogenetic analysis based on Pangolin classification clustered South Kivu sequences into seven lineages (A.23.1, B.1.1.6, B.1.214, B.1.617.2, B.1.351, C.16, and P.1). The Delta (B.1.617.2) variant was the most dominant and responsible for outbreaks during the third wave. Based on the Wuhan reference genome, 289 distinct mutations were detected, including 141 missenses, 123 synonymous, and 25 insertions/deletions when our isolates were mapped to the Wuhan reference strain. Most of these point mutations were located within the coding sequences of the SARS-CoV-2 genome that includes spike, ORF1ab, ORF3, and nucleocapsid protein genes. The most common mutation was D614G (1841A>G) observed in 61 sequences, followed by L4715L (14143 C>T) found in 60 sequences. CONCLUSION: Our findings highlight multiple introductions of SARS-CoV-2 into South Kivu through different sources and subsequent circulation of variants in the province. These results emphasize the importance of timely monitoring of genetic variation and its effect on disease severity. This work set a foundation for the use of genomic surveillance as a tool for future global pandemic management and control.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/epidemiology , Democratic Republic of the Congo/epidemiology , Genome, Viral , Humans , Mutation , Pangolins , Phylogeny , SARS-CoV-2/genetics
2.
Ecol Evol ; 12(3): e8713, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342608

ABSTRACT

This study aimed at assessing haplotype diversity and population dynamics of three Congolese indigenous goat populations that included Kasai goat (KG), small goat (SG), and dwarf goat (DG) of the Democratic Republic of Congo (DRC). The 1169 bp d-loop region of mitochondrial DNA (mtDNA) was sequenced for 339 Congolese indigenous goats. The total length of sequences was used to generate the haplotypes and evaluate their diversities, whereas the hypervariable region (HVI, 453 bp) was analyzed to define the maternal variation and the demographic dynamic. A total of 568 segregating sites that generated 192 haplotypes were observed from the entire d-loop region (1169 bp d-loop). Phylogenetic analyses using reference haplotypes from the six globally defined goat mtDNA haplogroups showed that all the three Congolese indigenous goat populations studied clustered into the dominant haplogroup A, as revealed by the neighbor-joining (NJ) tree and median-joining (MJ) network. Nine haplotypes were shared between the studied goats and goat populations from Pakistan (1 haplotype), Kenya, Ethiopia and Algeria (1 haplotype), Zimbabwe (1 haplotype), Cameroon (3 haplotypes), and Mozambique (3 haplotypes). The population pairwise analysis (FST ) indicated a weak differentiation between the Congolese indigenous goat populations. Negative and significant (p-value <.05) values for Fu's Fs (-20.418) and Tajima's (-2.189) tests showed the expansion in the history of the three Congolese indigenous goat populations. These results suggest a weak differentiation and a single maternal origin for the studied goats. This information will contribute to the improvement of the management strategies and long-term conservation of indigenous goats in DRC.

SELECTION OF CITATIONS
SEARCH DETAIL