Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639491

ABSTRACT

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

2.
Proteomics ; 24(1-2): e2300151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904306

ABSTRACT

The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.


Subject(s)
Nicotine , Receptors, Nicotinic , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Acetylcholine/metabolism , Torpedo/metabolism , Tandem Mass Spectrometry , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism
3.
Vaccines (Basel) ; 11(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37243079

ABSTRACT

We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.

4.
Article in English | MEDLINE | ID: mdl-34444002

ABSTRACT

The U.S. Hispanic female population has one of the highest breast cancer (BC) incidence and mortality rates, while BC is the leading cause of cancer death in Puerto Rican women. Certain foods may predispose to carcinogenesis. Our previous studies indicate that consuming combined soy isoflavones (genistein, daidzein, and glycitein) promotes tumor metastasis possibly through increased protein synthesis activated by equol, a secondary dietary metabolite. Equol is a bacterial metabolite produced in about 20-60% of the population that harbor and exhibit specific gut microbiota capable of producing it from daidzein. The aim of the current study was to investigate the prevalence of equol production in Puerto Rican women and identify the equol producing microbiota in this understudied population. Herein, we conducted a cross-sectional characterization of equol production in a clinically based sample of eighty healthy 25-50 year old Puerto Rican women. Urine samples were collected and evaluated by GCMS for the presence of soy isoflavones and metabolites to determine the ratio of equol producers to equol non-producers. Furthermore, fecal samples were collected for gut microbiota characterization on a subset of women using next generation sequencing (NGS). We report that 25% of the participants were classified as equol producers. Importantly, the gut microbiota from equol non-producers demonstrated a higher diversity. Our results suggest that healthy women with soy and high dairy consumption with subsequent equol production may result in gut dysbiosis by having reduced quantities (diversity) of healthy bacterial biomarkers, which might be associated to increased diseased outcomes (e.g., cancer, and other diseases).


Subject(s)
Equol , Isoflavones , Adult , Cross-Sectional Studies , Dietary Supplements , Female , Hispanic or Latino , Humans , Middle Aged , Postmenopause
5.
Anal Bioanal Chem ; 413(18): 4673-4680, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34046698

ABSTRACT

A fast PCR-assisted impedimetric biosensor was developed for the selective detection of the clbN gene from the polyketide synthase (pks) genomic island in real Escherichia coli samples. This genomic island is responsible for the production of colibactin, a harmful genotoxin that has been associated with colorectal cancer. The experimental protocol consisted of immobilizing the designated forward primer onto an Au electrode surface to create the sensing probe, followed by PCR temperature cycling in blank, positive, and negative DNA controls. Target DNA identification was possible by monitoring changes in the system's charge transfer resistance values (Rct) before and after PCR treatment through electrochemical impedance spectroscopy (EIS) analysis. Custom-made, flexible gold electrodes were fabricated using chemical etching optical lithography. A PCR cycle study determined the optimum conditions to be at 6 cycles providing fast results while maintaining a good sensitivity. EIS data for the DNA recognition process demonstrated the successful distinction between target interaction resulting in an increase in resistance to charge transfer (Rct) percentage change of 176% for the positive DNA control vs. 21% and 20% for the negative and non-DNA-containing controls, respectively. Results showed effective fabrication of a fast, PCR-based electrochemical biosensor for the detection of pks genomic island with a calculated limit of detection of 17 ng/µL.


Subject(s)
Biosensing Techniques/methods , Dielectric Spectroscopy/methods , Escherichia coli/genetics , Genome, Bacterial , Peptides/genetics , Polyketide Synthases/genetics , Polymerase Chain Reaction/methods , Limit of Detection , Polyketides
6.
Article in English | MEDLINE | ID: mdl-33571843

ABSTRACT

A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , env Gene Products, Human Immunodeficiency Virus/analysis , Animals , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , Limit of Detection , Linear Models , Recombinant Proteins/analysis , Recombinant Proteins/metabolism , Reproducibility of Results , env Gene Products, Human Immunodeficiency Virus/metabolism
7.
PLoS One ; 15(6): e0231679, 2020.
Article in English | MEDLINE | ID: mdl-32559193

ABSTRACT

The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5-5.5 and 6.0-7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.


Subject(s)
Glycopeptides/analysis , HIV Antibodies/immunology , HIV-1/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigen-Antibody Reactions , CHO Cells , Cricetinae , Cricetulus , Female , Glycosylation , HEK293 Cells , Humans , Middle Aged , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
8.
Front Pharmacol ; 11: 246, 2020.
Article in English | MEDLINE | ID: mdl-32256353

ABSTRACT

Plasmodium falciparum parasites are increasingly drug-resistant, requiring the search for novel antimalarials with distinct modes of action. Enzymes in the glutathione pathway, including glutathione S-transferase (GST), show promise as novel antimalarial targets. This study aims to better understand the biological function of Plasmodium GST, assess its potential as a drug target, and identify novel antiplasmodial compounds using the rodent model P. berghei. By using reverse genetics, we provided evidence that GST is essential for survival of P. berghei intra-erythrocytic stages and is a valid target for drug development. A structural model of the P. berghei glutathione S-transferase (PbGST) protein was generated and used in a structure-based screening of 900,000 compounds from the ChemBridge Hit2Lead library. Forty compounds were identified as potential inhibitors and analyzed in parasite in vitro drug susceptibility assays. One compound, CB-27, exhibited antiplasmodial activity with an EC50 of 0.5 µM toward P. berghei and 0.9 µM toward P. falciparum multidrug-resistant Dd2 clone B2 parasites. Moreover, CB-27 showed a concentration-dependent inhibition of the PbGST enzyme without inhibiting the human ortholog. A shape similarity screening using CB-27 as query resulted in the identification of 24 novel chemical scaffolds, with six of them showing antiplasmodial activity ranging from EC50 of 0.6-4.9 µM. Pharmacokinetic and toxicity predictions suggest that the lead compounds have drug-likeness properties. The antiplasmodial potency, the absence of hemolytic activity, and the predicted drug-likeness properties position these compounds for lead optimization and further development as antimalarials.

9.
Sci Rep ; 9(1): 16011, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31690733

ABSTRACT

Acyl carrier proteins (ACPs) are essential to the production of fatty acids. In some species of marine bacteria, ACPs are arranged into tandem repeats joined by peptide linkers, an arrangement that results in high fatty acid yields. By contrast, Escherichia coli, a relatively low producer of fatty acids, uses a single-domain ACP. In this work, we have engineered the native E. coli ACP into tandem di- and tri-domain constructs joined by a naturally occurring peptide linker from the PUFA synthase of Photobacterium profundum. The size of these tandem fused ACPs was determined by size exclusion chromatography to be higher (21 kDa, 36 kDa and 141 kDa) than expected based on the amino acid sequence (12 kDa, 24 kDa and 37 kDa, respectively) suggesting the formation of a flexible extended conformation. Structural studies using small-angle X-ray scattering (SAXS), confirmed this conformational flexibility. The thermal stability for the di- and tri-domain constructs was similar to that of the unfused ACP, indicating a lack of interaction between domains. Lastly, E. coli cultures harboring tandem ACPs produced up to 1.6 times more fatty acids than wild-type ACP, demonstrating the viability of ACP fusion as a method to enhance fatty acid yield in bacteria.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Photobacterium/metabolism , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/metabolism , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Protein Conformation , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Scattering, Small Angle , Temperature , X-Ray Diffraction
10.
Front Genet ; 10: 631, 2019.
Article in English | MEDLINE | ID: mdl-31354787

ABSTRACT

The gut microbiota has been implicated in a number of normal and disease biological processes. Recent studies have identified a subset of gut bacterial genes as potentially involved in inflammatory processes. In this work, we explore the sequence variability for some of these bacterial genes using a combination of deep sequencing and oligotyping, a data analysis application that identifies mutational hotspots in short stretches of DNA. The genes for pks island, tcpC and usp, all harbored by certain strains of E. coli and all implicated in inflammation, were amplified by PCR directly from stool samples and subjected to deep amplicon sequencing. For comparison, the same genes were amplified from individual bacterial clones. The amplicons for pks island and tcpC from stool samples showed minimal levels of heterogeneity comparable with the individual clones. The amplicons for usp from stool samples, by contrast, revealed the presence of five distinct oligotypes in two different regions. Of these, the oligotype GT was found to be present in the control uropathogenic clinical isolate and also detected in stool samples from individuals with colorectal cancer (CRC). Mutational hotspots were mapped onto the USP protein, revealing possible substitutions around Leu110, Glu114, and Arg115 in the middle of the pyocin domain (Gln110, Gln114, and Thr115 in most healthy samples), and also Arg218 in the middle of the nuclease domain (His218 in the uropathogenic strain). All of these results suggest that a level of variability within bacterial pro-inflammatory genes could explain differences in bacterial virulence and phenotype.

11.
Diseases ; 7(1)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717148

ABSTRACT

Gut bacterial toxins are thought to contribute to the development of colorectal cancer (CRC). This study examines the presence of specific gut bacterial toxin genes in stool samples from individuals with colorectal neoplasia (adenomas and/or CRC). The presence of bacterial genes encoding genotoxic or pro-inflammatory factors (pks, tcpC, gelE, cnf-1, AMmurB, and usp) was established by PCR of stool samples from individuals from mainland US (n = 30; controls = 10, adenoma = 10, CRC = 10) and from Puerto Rico (PR) (n = 33; controls = 13; adenomas = 8; CRC = 12). Logistic regression models and multinomial logistic regression models were used to estimate the magnitude of association. Distinct bacterial gene profiles were observed in each sample cohort. In individuals with CRC, AMmurB was detected more frequently in samples from the US and gelE in samples from PR. In samples from PR, individuals with ≥2 gut bacterial toxin genes in stool had higher odds of having colorectal neoplasia (OR = 11.0, 95%: CI 1.0⁻637.1): however, no significant association between bacterial genes and colorectal neoplasia was observed in the US cohort. Further analyses are warranted in a larger cohort to validate these preliminary findings, but these encouraging results highlight the importance of developing bacterial markers as tools for CRC diagnosis or risk stratification.

12.
Front Genet ; 9: 116, 2018.
Article in English | MEDLINE | ID: mdl-29692798

ABSTRACT

Background: The human gut microbiota is a dynamic community of microorganisms that mediate important biochemical processes. Differences in the gut microbial composition have been associated with inflammatory bowel diseases (IBD) and other intestinal disorders. In this study, we quantified and compared the frequencies of eight genotoxic and/or pro-inflammatory bacterial genes found in metagenomic Whole Genome Sequences (mWGSs) of samples from individuals with IBD vs. a cohort of healthy human subjects. Methods: The eight selected gene sequences were clbN, clbB, cif, cnf-1, usp, tcpC from Escherichia coli, gelE from Enterococcus faecalis and murB from Akkermansia muciniphila. We also included the sequences for the conserved murB genes from E. coli and E. faecalis as markers for the presence of Enterobacteriaceae or Enterococci in the samples. The gene sequences were chosen based on their previously reported ability to disrupt normal cellular processes to either promote inflammation or to cause DNA damage in cultured cells or animal models, which could be linked to a role in IBD. The selected sequences were searched in three different mWGS datasets accessed through the Human Microbiome Project (HMP): a healthy cohort (N = 251), a Crohn's disease cohort (N = 60) and an ulcerative colitis cohort (N = 17). Results: Firstly, the sequences for the murB housekeeping genes from Enterobacteriaceae and Enterococci were more frequently found in the IBD cohorts (32% E. coli in IBD vs. 12% in healthy; 13% E. faecalis in IBD vs. 3% in healthy) than in the healthy cohort, confirming earlier reports of a higher presence of both of these taxa in IBD. For some of the sequences in our study, especially usp and gelE, their frequency was even more sharply increased in the IBD cohorts than in the healthy cohort, suggesting an association with IBD that is not easily explained by the increased presence of E. coli or E. faecalis in those samples. Conclusion: Our results suggest a significant association between the presence of some of these genotoxic or pro-inflammatory gene sequences and IBDs. In addition, these results illustrate the power and limitations of the HMP database in the detection of possible clinical correlations for individual bacterial genes.

13.
Protein Sci ; 27(5): 969-975, 2018 05.
Article in English | MEDLINE | ID: mdl-29520922

ABSTRACT

FabA and FabZ are the two dehydratase enzymes in Escherichia coli that catalyze the dehydration of acyl intermediates in the biosynthesis of fatty acids. Both enzymes form obligate dimers in which the active site contains key amino acids from both subunits. While FabA is a soluble protein that has been relatively straightforward to express and to purify from cultured E. coli, FabZ has shown to be mostly insoluble and only partially active. In an effort to increase the solubility and activity of both dehydratases, we made constructs consisting of two identical subunits of FabA or FabZ fused with a naturally occurring peptide linker, so as to force their dimerization. The fused dimer of FabZ (FabZ-FabZ) was expressed as a soluble enzyme with an ninefold higher activity in vitro than the unfused FabZ. This construct exemplifies a strategy for the improvement of enzymes from the fatty acid biosynthesis pathways, many of which function as dimers, catalyzing critical steps for the production of fatty acids.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Fatty Acid Synthase, Type II/metabolism , Hydro-Lyases/metabolism , Biocatalysis , Dehydration , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Fatty Acid Synthase, Type II/chemistry , Fatty Acid Synthase, Type II/isolation & purification , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Hydro-Lyases/chemistry , Hydro-Lyases/isolation & purification , Models, Molecular , Protein Multimerization , Solubility
14.
Enzyme Microb Technol ; 55: 133-9, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24411456

ABSTRACT

Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Photobacterium/enzymology , Biocatalysis , Biofuels , Carbon/metabolism , Culture Media , Fatty Acids, Unsaturated/biosynthesis , Fermentation , Glycerol/metabolism , Glycerol/pharmacology , Peptide Fragments/genetics , Peptide Fragments/metabolism , Photobacterium/genetics , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Temperature
15.
RSC Adv ; 4(94): 52357-52365, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25598969

ABSTRACT

The enzyme telomerase is present in about 85% of human cancers which makes it not only a good target for cancer treatment but also an excellent marker for cancer detection. Using a single stranded DNA probe specific for telomerase binding and reverse transcription tethered to an interdigital gold electrode array surface, the chromosome protection provided by the telomerase was replicated and followed by Electrochemical Impedance Spectroscopy as an unlabeled biosensor. Using this system designed in-house, easy and affordable, impedance measurements were taken while incubating at 37 °C and promoting the probe elongation. This resulted in up to 14-fold increase in the charge transfer resistance when testing a telomerase-positive nuclear extract from Jurkat cells compared to the heat-inactivated telomerase-negative nuclear extract. The electron transfer process at the Au electrodes was studied before the elongation, at different times after the elongation, and after desorption of non-specific binding.

16.
Adv Microbiol ; 4(15): 1065-1075, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25635239

ABSTRACT

Although predominantly associated with health benefits, the gut microbiota has also been shown to harbor genes that promote inflammation. In this work, we report a method for the direct detection and quantification of these pro-inflammatory bacterial genes by PCR and qPCR in DNA extracted from human stool samples. PCR reactions were performed to detect (i) the pks island genes, (ii) tcpC, which is present in some strains of Escherichia coli and (iii) gelE presented in some strains of Enterococcus faecalis. Additionally, we screened for the presence of the following genes encoding cyclomodulins that disrupted mammalian cell division: (iv) cdt (which encodes the cytolethal distending toxin) and (v) cnf-1 (which encodes the cytotoxic necrotizing factor-1). Our results show that 20% of the samples (N = 41) tested positive for detectable amounts of pks island genes, whereas 10% of individuals were positive for tcpC or gelE and only one individual was found to harbor the cnf-1 gene. Of the 13 individuals that were positive for at least one of the pro-inflammatory genes, 5 were found to harbor more than one. A quantitative version of the assay, which used real-time PCR, revealed the pro-inflammatory genes to be in high copy numbers: up to 1.3 million copies per mg of feces for the pks island genes. Direct detection of specific genes in stool could prove useful toward screening for the presence of pro-inflammatory bacterial genes in individuals with inflammatory bowel diseases or colorectal cancer.

17.
Protein Sci ; 22(7): 954-63, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23696301

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are made in some strains of deep-sea bacteria by multidomain proteins that catalyze condensation, ketoreduction, dehydration, and enoyl-reduction. In this work, we have used the Udwary-Merski Algorithm sequence analysis tool to define the boundaries that enclose the dehydratase (DH) domains in a PUFA multienzyme. Sequence analysis revealed the presence of four areas of high structure in a region that was previously thought to contain only two DH domains as defined by FabA-homology. The expression of the protein fragment containing all four protein domains resulted in an active enzyme, while shorter protein fragments were not soluble. The tetradomain fragment was capable of catalyzing the conversion of crotonyl-CoA to ß-hydroxybutyryl-CoA efficiently, as shown by UV absorbance change as well as by chromatographic retention of reaction products. Sequence alignments showed that the two novel domains contain as much sequence conservation as the FabA-homology domains, suggesting that they too may play a functional role in the overall reaction. Structure predictions revealed that all domains belong to the hotdog protein family: two of them contain the active site His70 residue present in FabA-like DHs, while the remaining two do not. Replacing the active site His residues in both FabA domains for Ala abolished the activity of the tetradomain fragment, indicating that the DH activity is contained within the FabA-homology regions. Taken together, these results provide a first glimpse into a rare arrangement of DH domains which constitute a defining feature of the PUFA synthases.


Subject(s)
Bacterial Proteins/chemistry , Fatty Acid Synthases/chemistry , Hydro-Lyases/chemistry , Algorithms , Amino Acid Sequence , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Fatty Acid Synthases/biosynthesis , Fatty Acid Synthases/genetics , Fatty Acids, Unsaturated/metabolism , Hydro-Lyases/biosynthesis , Hydro-Lyases/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
18.
PLoS One ; 8(2): e57859, 2013.
Article in English | MEDLINE | ID: mdl-23469090

ABSTRACT

The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP domains for increasing the yield of fatty acids in bacterial cultures.


Subject(s)
Acyl Carrier Protein/chemistry , Fatty Acid Synthases/chemistry , Algorithms , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Photobacterium/enzymology , Protein Denaturation , Protein Structure, Tertiary , Solutions , Temperature
19.
J Biol Chem ; 288(15): 10841-8, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23430744

ABSTRACT

Thioesterase activity is typically required for the release of products from polyketide synthase enzymes, but no such enzyme has been characterized in deep-sea bacteria associated with the production of polyunsaturated fatty acids. In this work, we have expressed and purified the Orf6 thioesterase from Photobacterium profundum. Enzyme assays revealed that Orf6 has a higher specific activity toward long-chain fatty acyl-CoA substrates (palmitoyl-CoA and eicosapentaenoyl-CoA) than toward short-chain or aromatic acyl-CoA substrates. We determined a high resolution (1.05 Å) structure of Orf6 that reveals a hotdog hydrolase fold arranged as a dimer of dimers. The putative active site of this structure is occupied by additional electron density not accounted for by the protein sequence, consistent with the presence of an elongated compound. A second crystal structure (1.40 Å) was obtained from a crystal that was grown in the presence of Mg(2+), which reveals the presence of a binding site for divalent cations at a crystal contact. The Mg(2+)-bound structure shows localized conformational changes (root mean square deviation of 1.63 Å), and its active site is unoccupied, suggesting a mechanism to open the active site for substrate entry or product release. These findings reveal a new thioesterase enzyme with a preference for long-chain CoA substrates in a deep-sea bacterium whose potential range of applications includes bioremediation and the production of biofuels.


Subject(s)
Bacterial Proteins/chemistry , Open Reading Frames , Palmitoyl Coenzyme A/chemistry , Photobacterium/enzymology , Protein Multimerization/physiology , Thiolester Hydrolases/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Palmitoyl Coenzyme A/metabolism , Protein Structure, Quaternary , Substrate Specificity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...