Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Alzheimers Dement ; 13(2): 152-167, 2017 02.
Article in English | MEDLINE | ID: mdl-27693185

ABSTRACT

A major obstacle to presymptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle reentry (CCR) mediated by amyloid-ß oligomers (AßOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AßO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AßOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AßOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death.


Subject(s)
Cell Cycle/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Neurons/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Humans , Hydrocephalus, Normal Pressure/metabolism , Insulin/metabolism , Lysosomes/metabolism , Mice, Knockout , Middle Aged , tau Proteins/genetics , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL