Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38470734

ABSTRACT

The determination of thyroid hormones has practical clinical significance for the diagnosis of hyperthyroidism and hypothyroidism diseases. Considering this aspect, a wide range of analytical methods for the detection of analytes, including immunoassay, chemiluminescence, mass spectroscopy and high-performance liquid chromatography, among others, has been developed. This type of analysis provides feasible results. Nevertheless, it requires qualified staff, special facilities and is time-consuming. For this reason, this paper relies on the fabrication of an electrochemical device developed with inkjet printing technology for the free detection of Thyroxine (T4). To manufacture our electrochemical device, several aspects were considered from the use of materials that amplify electrical signals, to finding a supramolecular scaffold that possess affinity towards the target analyte and the need of preconcentrating the analyte on the electrode's surface. For this task, printed devices were modified with a hybrid nanomaterial consisting of reduced graphene oxide (rGO) tuned with Au nanoparticles (Au-NPs) and an entrapment agent and different thiolated cyclodextrins (x-CD-SH) as carrying agents. Analytes were preconcentrated via supramolecular chemistry due to the formation of an inclusion complex between the cyclodextrin and hormones. Morphological and electrochemical characterization of the final device was carried out to ensure the proper workability of the electrode, achieving excellent response, sensitivity and limit of detection (LOD).

2.
Mikrochim Acta ; 191(1): 3, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041754

ABSTRACT

A modular microflow injection analysis (microFIA) system for the determination of Fe(III) in a bioleaching reactor has been designed, developed and validated. The different modules of the analyzer (mixer, diluter, disperser and detector) were 3D-printed. Fe(III) quantification is due by measuring the color intensity of the chelate formed between Fe(III) and salicylic acid at 525 nm. The device has been designed to dilute, disperse and detect high Fe(III) concentrations in the form of an inexpensive multi-step photometric flow cell that uses an light-emitting diode (LED) as a light source and an light-dependent resistor (LDR) as a light intensity detector. This microFIA system has been shown to be suitable for automatic and continuous determination of Fe(III) in the operation of a bioreactor for the oxidation of Fe(II). The device has a good repeatability (less than 5% of coefficient of variation in the whole range of concentrations) and accuracy of around 100%. The analyzer features an exceptional wide linear range, between 25 and 6000 mg·L-1. The device was successfully applied to the determination of Fe(III) in real samples. The obtained results proved that the method is applicable for accurate, precise, rapid, and low-cost colorimetric analysis and didn't show significant differences with a conventional UV-Vis method.

3.
ACS ES T Water ; 3(4): 1116-1125, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-38156327

ABSTRACT

Concern over pollution has led to an increase in wastewater treatment systems, which require constant monitorization. In particular, hydrogen sulfide (H2S) is a toxic gas, soluble in water, commonly found in industrial and urban effluents. For proper removal control, fast, durable, and easy-to-handle analytical systems, capable of on-line measurements, such as electrochemical sensors, are required. Moreover, for a proper monitoring of said treatment processes, analysis must be carried out through all steps, thus needing for an economic and highly reproducible method of sensor fabrication. Digital printing have risen in the last few years as technologies capable of mass producing miniaturized electronical devices, allowing for the fabrication of amperometric sensors. Here, a 2 mm2 graphite (Gr) electrode, modified with different dispersions of single-walled carbon nanotubes (SWCNTs), poly(vinyl alcohol), poly(diallyl dimethylammonium chloride), and polylactic acid (PLA), is presented as a H2S sensor. SWCNTs allow for lower oxidation potentials, higher sensitivity, and a reduced rate of sulfur poisoning, while polymer dispersion of PLA increases mechanical stability and as a result, electrochemical performance. This microsensor presents an optimal pH working range between 7.5 and 11.0, a limit of detection of 4.3 µM, and the capacity to operate on complex matrices for H2S contamination detection.

4.
Anal Chim Acta ; 1278: 341725, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709466

ABSTRACT

BACKGROUND: Highly ordered chiral secondary structures as well as multiple (tunable) recognition sites are the keys to success of polysaccharide carbamate-based chiral selectors in enantioseparation science. Hydrogen bonds (HBs), dipole-dipole, and π-π interactions are classically considered the most frequent noncovalent interactions underlying enantioselective recognition with these chiral selectors. Very recently, halogen, chalcogen and π-hole bonds were also identified as interactions working in polysaccharide carbamate-based selectors to promote enantiomer distinction. On the contrary, the function of dispersion interactions in this field was not explored so far. RESULTS: The enantioseparation of chiral ferrocenes featuring chiral axis or chiral plane as stereogenic elements was performed by comparing five polysaccharide carbamate-based chiral columns, with the aim to identify enantioseparation outcomes that could be reasonably determined by dispersion forces, making available a reliable experimental data set for future theoretical studies to confirm the heuristic hypothesis. The effects of mobile phase polarity and temperature on the enantioseparation were considered, and potential recognition sites on analytes and selectors were evaluated by electrostatic potential (V) analysis and molecular dynamics (MD). In this first part, the enantioseparation of 3,3'-dibromo-5,5'-bis-ferrocenylethynyl-4,4'-bipyridine bearing two ferrocenylethynyl units linked to an axially chiral core was performed and compared to that of the analyte featuring the same structural motif with two phenyl groups in place of the ferrocenyl moieties. The results of this study showed the superiority of the ferrocenyl compared to the phenyl group, as a structural element favouring enantiodifferentiation. SIGNIFICANCE AND NOVELTY: Even if dispersion (London) forces have been envisaged acting in liquid-phase enantioseparations, focused studies to explore possible contributions of dispersion forces with polysaccharide carbamate-based selectors are practically missing. This study allowed us to collect experimental information that support the involvement of dispersion forces as contributors to liquid-phase enantioseparation, paving the way to a new picture in this field.

5.
J Chromatogr A ; 1680: 463430, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36030567

ABSTRACT

In this paper, the potential of micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) as eluents in dispersive micro-solid phase extraction (D-µSPE) using polydopamine-coated magnetite nanoparticles (Fe3O4@PDA NPs) for the extraction and preconcentration of seven basic drugs (bupropion, citalopram, fluoxetine, mianserin, nomifensine, trimipramine, and viloxazine) is explored for the first time (to the best to our knowledge) and compared with conventional hydro-organic eluents. The impact of the sample solution pH, Fe3O4@PDA NPs and PDA coating amounts and extraction time on the extraction efficiency (EE), as well as the composition of the eluent on the overall efficiency (OE) are studied. Under the selected experimental conditions (50 mg of Fe3O4@PDA NPs, 100 µL of 1 M NH3, 5 min of extraction time and 0.15 M SDS at pH 2.6 as eluent), EE and OE values were higher than 90% for all compounds and for the most hydrophobic compounds (trimipramine, fluoxetine and mianserin), respectively. The results shown in this paper demonstrate the suitability of Fe3O4@PDA NPs as a sorbent for the extraction of antidepressants as well as the advantages of using SDS micellar solutions over classic hydro-organic eluents containing methanol, acetonitrile or tetrahydrofuran. Finally, the stability and reusability of the Fe3O4@PDA NPs is proven.


Subject(s)
Magnetite Nanoparticles , Antidepressive Agents , Chromatography, High Pressure Liquid/methods , Fluoxetine , Indoles , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Mianserin , Micelles , Polymers , Sodium Dodecyl Sulfate/chemistry , Solid Phase Extraction/methods , Trimipramine
6.
J Chromatogr A ; 1673: 463073, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35500389

ABSTRACT

A comparative study on the retention behaviour and enantioresolution of 54 structurally unrelated neutral and basic compounds using five commercial cellulose-based chiral stationary phases (CSPs) and hydro-organic mobile phases compatible with MS detection is performed. Four phenylcarbamate-type cellulose CSPs (cellulose tris(3,5-dimethylphenylcarbamate), Cell1; cellulose tris(3-chloro-4-methylphenylcarbamate), Cell2; cellulose tris(4-chloro-3-methylphenylcarbamate), Cell4 and cellulose tris(3,5- dichlorophenylcarbamate), Cell5) and one benzoate-type cellulose CSP (cellulose tris(4-methylbenzoate), Cell3) are assayed. Mobile phases consist of binary mixtures of methanol (30-90% MeOH) or acetonitrile (10-98% ACN) with 5 mM ammonium bicarbonate (pH = 8.0). The existence of reversed phase (RPLC) and hydrophilic interaction liquid chromatography (HILIC) retention behaviour domains is explored. In MeOH/H2O mobile phases, for all compounds and CSPs, the typical RPLC retention behaviour is observed. When using ACN/H2O mobile phases, for all compounds in all CSPs (even in the non-chlorinated CSPs) a U-shaped retention behaviour depending on the ACN/H2O content is observed which indicates the coexistence of the RPLC- (< 80% ACN) and HILIC- (∼80-98% ACN) domains. The magnitude of retention changes in both domains is related to the hydrophobicity of the compound as well as to the nature of the CSP. The study of the effect of the nature and concentration of the organic solvent, as well as the nature of the CSP on the enantioresolution reveals that: (i) the use of MeOH/H2O or ACN/H2O greatly affects the enantioselectivity and enantioresolution degree of the chromatographic systems, being, in general, better the results obtained with ACN/H2O mobile phases. (ii) The ACN-RPLC-domain provides much better enantioresolution than HILIC-domain. (iii) Cell2, especially with ACN/H2O mobile phases, is the CSP that allows baseline enantioresolution for a higher number of compounds. (iv) Phenylcarbamate-type CSPs do not offer clear complementary enantioselectivity to that of Cell2. (v) Cell3 is the only CSP that provides marked complementary enantioselectivity to that of Cell2, almost orthogonal in MeOH/H2O mobile phases.


Subject(s)
Chromatography, Reverse-Phase , Phenylcarbamates , Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry , Phenylcarbamates/chemistry , Stereoisomerism
7.
J Chromatogr A ; 1672: 463048, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35436687

ABSTRACT

Artificial neural networks (ANN; feed-forward mode) are used to quantitatively estimate the enantioresolution (Rs) in cellulose tris(3,5-dimethylphenylcarbamate) of chiral molecules from their structural information. To the best of our knowledge, for the first time, a dataset of structurally unrelated compounds is modelled using ANN, attempting to approach a model of general applicability. After setting a strategy compatible with the data complexity and their relatively limited size (56 molecules), by prefixing initial ANN inner weights and the validation and cross-validation subsets, the ANN optimisation based on a novel quality indicator calculated from 9 ANN outputs allows selecting a proper (predictive) ANN architecture (a single hidden layer of 7 neurons) and performing a forward-stepwise feature selection process (8 variables are selected). Such relatively simple ANN offers reasonable good general performance in predicting Rs (e.g. validation plot statistics: mean squared error = 0.047 and R = 0.98 and 0.92, for all or just the validation molecules, respectively). Finally, a study of the relative importance of the selected variables, combining the estimation from two approaches, suggests that the surface tension (positive overall contribution to Rs) and the -NHR groups (negative overall contribution to Rs) are found to be the main variables explaining the enantioresolution in the current conditions.


Subject(s)
Neural Networks, Computer , Phenylcarbamates , Acetonitriles , Cellulose/analogs & derivatives , Chromatography, High Pressure Liquid , Phenylcarbamates/chemistry , Stereoisomerism
8.
Chirality ; 34(4): 609-619, 2022 04.
Article in English | MEDLINE | ID: mdl-35072961

ABSTRACT

Planar chiral ferrocenes are well-known compounds that have attracted interest for application in synthesis, catalysis, material science, and medicinal chemistry for several decades. In spite of the fact that asymmetric synthesis procedures for obtaining enantiomerically enriched ferrocenes are available, sometimes, the accessible enantiomeric excess of the chiral products is unsatisfactory. In such cases and for resolution of racemic planar chiral ferrocenes, enantioselective high-performance liquid chromatography (HPLC) on polysaccharide-based chiral stationary phases (CSPs) has been used in quite a few literature articles. However, although moderate/high enantioselectivities have been obtained for planar chiral ferrocenes bearing polar substituents, the enantioseparation of derivatives containing halogens, or exclusively alkyl groups, remains rather challenging. In this study, the enantioseparation of ten planar chiral 1,2- and 1,3-disubstituted ferrocenes was explored by using five polysaccharide-based CSPs under multimodal elution conditions. Baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.20 to 2.92. The presence of π-extended systems in the analyte structure was shown to impact affinity of the most retained enantiomer toward amylose-based selectors, observing retention times higher than 80 min with methanol-containing mobile phases (MPs). Electrostatic potential (V) analysis and molecular dynamics (MD) simulations were used in order to study interaction modes at the molecular level.


Subject(s)
Amylose , Polysaccharides , Amylose/chemistry , Chromatography, High Pressure Liquid/methods , Metallocenes , Polysaccharides/chemistry , Stereoisomerism
9.
J Chromatogr A ; 1625: 461281, 2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32709332

ABSTRACT

Polysaccharide-based chiral stationary phases (CSPs) are the most used chiral selectors in HPLC. These CSPs can be used in normal, polar organic and aqueous-organic mobile phases. However, normal and polar organic mobile phases are not adequate for chiral separation of polar compounds, for the analysis of aqueous samples and for MS detection. In these situations, reversed phase conditions, without the usual non-volatile additives incompatible with MS detection, are preferable. Moreover, in most of the reported chiral chromatographic methods, retention is too large for routine work. In this paper, the chiral separation of 53 structurally unrelated compounds is studied using three commercial amylose-based CSPs -coated amylose tris(3,5-dimethylphenylcarbamate) (Am1), coated amylose tris(5-chloro-2-methylphenylcarbamate) (Am2), and immobilised amylose tris(3-chloro-5-methylphenylcarbamate) (Am3)-. Chiral separations are carried out using acetonitrile/ammonium bicarbonate (pH = 8.0) mixtures, reversed mobile phases compatible with MS detection. To provide realistic conditions for routine analysis, maximum retention factors are set to 15. Retention and enantioresolution behaviour of compounds in those CSPs are compared. On the other hand, to compare and describe the resolution ability of these CSPs, 58 structural variables of the compounds are tested to model for the first time a categorical enantioresolution (CRs) for Am1 and Am3 CSPs. Discriminant partial least squares, for one response categorical variable (DPLS1) is used for feature selection, modelling. The final DPLS1 models showed good descriptive ability.


Subject(s)
Amylose/chemistry , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Models, Chemical , Chromatography, High Pressure Liquid , Least-Squares Analysis , Regression Analysis , Stereoisomerism
10.
J Chromatogr A ; 1625: 461334, 2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32709359

ABSTRACT

A comprehensive study on the chiral separation of bupivacaine, mepivacaine, prilocaine and propanocaine with eight commercial polysaccharide-based chiral stationary phases (CSPs) in reversed phase conditions compatible with MS detection is performed. Methanol and acetonitrile are used as organic modifiers. Retention and resolution values obtained for each compound in the different CSPs and mobile phases are compared. The polysaccharide-based CSPs tested present different enantioselectivity towards the analytes. From the results, the experimental conditions for determining the enantiomers of bupivacaine, mepivacaine, prilocaine and propanocaine in saline aqueous samples using MS detection are used, for the first time, to perform an enantioselective biodegradability study.


Subject(s)
Anesthetics, Local/isolation & purification , Chromatography, Reverse-Phase/methods , Polysaccharides/chemistry , Acetonitriles/chemistry , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Methanol/chemistry , Molecular Weight , Stereoisomerism , Water/chemistry
11.
Nanomaterials (Basel) ; 10(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560355

ABSTRACT

The incorporation of nanomaterials on (bio)sensors based on composite materials has led to important advances in the analytical chemistry field due to the extraordinary properties that these materials offer. Nanodiamonds (NDs) are a novel type of material that has raised much attention, as they have the possibility of being produced on a large scale by relatively inexpensive synthetic methodologies. Moreover, NDs can present some other interesting features, such as fluorescence, due to surface functionalization and proved biocompatibility, which makes them suitable for biomedical applications. In addition, NDs can be customized with metallic nanoparticles (NPs), such as silver or gold, in order to combine the features of both. Raw NDs were used as modifiers of sensors due to the electrocatalytic effect of the sp2 and oxygenated species present on their surface. The aim of this research work is evaluating the applicability of NDs modified with silver (Ag@NDs) and gold (Au@NDs) nanoparticles for the development of a suitable (bio)sensing platform. A complete morphological and electrochemical characterization as a function of the prepared nanocomposite composition was performed in order to improve the electroanalytical properties of the developed (bio)sensors. In the present work, the optimal composition for Au@NDs present on the nanocomposite matrix is 3.5% and the one for Ag@NDs is 1%. Good results were obtained in the evaluation of the optimal composition towards hydrogen peroxide and glucose as a model analyte using a (bio)sensor based on graphite-epoxy-Ag@NDs (17:82:1).

12.
Environ Pollut ; 263(Pt A): 114567, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33618489

ABSTRACT

Marine litter is one of the most concerning threats for marine wildlife especially regarding plastics and their micro-sized forms, widely known as microplastics. The present study evaluates mesoscale spatial (230 km, Catalan coast) and temporal (2007 vs 2017-2018, Barcelona area) differences on the ingestion of anthropogenic fibers in the deep-sea shrimp Aristeus antennatus in the NW Mediterranean Sea and its relation with shrimp's health condition. Synthetic fibers with lengths ranging between 0.16 and 37.9 mm were found in both stomach (where sometimes they were tangled up in balls) and intestine contents. The percentage of fiber occurrence was >65% at each sampling point. Tangled balls of fibers observed in stomach contents exhibited a wide range of sizes (up to a diameter of 1 cm) and were usually composed of fibers of different polymers, sizes and colours. Differences between locations (2018) were found, with greater fiber loads towards the south during spring and a great variability in summer, as shrimps caught off Barcelona showed a nearly thirty-times higher fiber load compared to shrimps from other localities. Highest concentrations were more likely to be related to major sources of fibers and currents in the area. Fiber load in shrimps from 2007 was comparable to that of shrimps captured in 2017 and 2018 (spring) yet a shift in the proportion of acrylic and polyester polymers was detected. No consistent effect on shrimp's health condition was found, with only a significant negative correlation found between gonadosomatic index and fibers for those shrimps with the highest values of fiber load (caught off Barcelona, summer 2018). Our findings contribute to the knowledge on plastic pollution for the NW Mediterranean Sea and highlight the potential use of this species as a sentinel species for plastic fiber contamination.


Subject(s)
Decapoda , Plastics , Animals , Eating , Environmental Monitoring , Mediterranean Sea , Microplastics
13.
Anal Chem ; 91(24): 15539-15546, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31730335

ABSTRACT

With a growing demand for the availability of inexpensive, simple, and rapid prototyped devices, the prospect of miniaturization of the reference electrodes using printing techniques becomes promising. A stable and reusable full-inkjet-printed solid-state reference electrode (IPRE) was developed. The reference electrode was fully produced by consecutive inkjet printing of several layers. Ag ink was printed and chlorinated by NaClO printing, forming a Ag/AgCl pseudoreference electrode. Then a surface protection by printing a Cl--saturated polyvinyl butyral membrane finally gave a reference electrode that demonstrated an outstanding performance comparable to commercial ones. This full inkjet printing fabrication strategy will improve the viability of producing low-cost miniaturized reference electrodes with interest in many electrochemical sensor-dependent areas.

14.
Anal Chem ; 91(21): 13916-13923, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31589016

ABSTRACT

Nitrogen-based chemicals represent one of the most important family of compounds in freshwater and marine ecosystems. The nitrogen cycle is responsible for spreading nitrogen compounds all over the environment in an equilibrium manner. Mankind's industrial activities have harshly contributed to the disruption of the nitrogen cycle and its consequences have severely affected Earth's ecosystems. Tracking the chemicals involved in the nitrogen cycle have become a crucial point in fighting against eutrophication and global water acidification. A smartphone readout-based system has been developed to determine the concentration of nitrite ion (the nitrogen compound that possess higher toxicity) in environmental samples. The device was fabricated by means of three-dimensional printing to allow easy design modification to fit any smartphone. Moreover, the system took advantage of the less explored potential of ambient light sensor contained within the smartphones. Finally, "ALSens" application was developed to be used by nontrained personnel to not only determine nitrite ion concentration but also to automatically send relevant parameters (analyte, day, hour, location, and concentration) of the assay for tracking purposes to an open online database, allowing a worldwide mapping of nitrite ion concentration. Considering the devastating implications of nitrogen cycle disruption, these systems for nitrite ion screening will suddenly become a standard global monitoring approach.


Subject(s)
Environmental Monitoring/instrumentation , Nitrites/analysis , Printing, Three-Dimensional/instrumentation , Smartphone , Databases, Factual , Environmental Monitoring/methods , Nitrogen Cycle , Online Systems
15.
J Chromatogr A ; 1568: 140-148, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30001901

ABSTRACT

The quantification of the enantiomeric fraction (EF) during the biodegradation process is essential for environmental risk assessment. In this paper the enantioselective biodegradation of ibuprofen, IBU, and ketoprofen, KET, two of the drugs most consumed, was evaluated. Biodegradation experiments were performed in batch mode using a minimal salts medium inoculated with an activated sludge (collected from a Valencian Waste Water Treatment Plant) and supplemented with the racemate of each compound. The inoculum activity was verified using fluoxetine as reference compound. The experimental conditions used (analyte concentration and volume of inoculum) were chosen according to OECD guidelines. In parallel, the optical density at 600 nm was measured to control the biomass growth and to connect it with enantioselectivity. Two RPLC methods for chiral separations of IBU and KET using polysaccharides-based stationary phases were developed. Novel calculations and adapted models, using directly the chromatographic peak areas as dependent variable, were proposed to estimate significant parameters related to the biodegradation process: biodegradation (BD) and EF values at given time, half-life times of (R)- and (S)-enantiomers, number of days to reach a complete BD and the minimum EF expected. The modelled BD and EF curves fitted adequately the data (R2 > 0.94). The use of these new equations provided similar results to those obtained using concentration data. However, the use of chromatographic peak areas data, eliminates the uncertainty associated to the use of the calibration curves. The results obtained in this paper indicate that an enantiorecognition towards IBU enantiomers by the microorganisms present in the activated sludge used in this study occurred, being the biodegradation of (R)-IBU higher than that of (S)-IBU. For KET, non-enantioselective biodegradation was observed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ibuprofen/chemistry , Ketoprofen/chemistry , Sewage , Biodegradation, Environmental , Calibration , Ibuprofen/analysis , Ketoprofen/analysis , Kinetics , Stereoisomerism , Wastewater/analysis
16.
Mar Pollut Bull ; 133: 44-52, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041334

ABSTRACT

Microplastic (MP) ingestion has been reported in a wide variety of organisms, however, its spatial occurrence and effects on wild populations remain quite unknown. The present study targets an economically and ecologically key species in the Mediterranean Sea, the shrimp Aristeus antennatus. 39.2% of the individuals sampled had MP in their stomachs, albeit in areas close to Barcelona city the percentage reached values of 100%. Overall, MP ingestion was confirmed in a wide spatial and depth (630-1870 m) range, pointing out the great dispersion of this pollutant. The benthophagous diet and close relationship with the sea bottom of A. antennatus might enhance MP exposure and ultimately lead to accidental ingestion. Detailed analysis of shrimps' diet revealed that individuals with MP had a higher presence of endobenthic prey. Microplastic fibers are probably retained for long periods due to stomach's morphology, but no negative effects on shrimp's biological condition were observed.


Subject(s)
Decapoda/drug effects , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Decapoda/metabolism , Food Chain , Mediterranean Sea , Plastics/analysis , Stomach/chemistry , Water Pollutants, Chemical/analysis
17.
Water Res ; 141: 57-64, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29775773

ABSTRACT

A great number of available pharmaceuticals are chiral compounds. Although they are usually manufactured as racemic mixtures, they can be enantioselectively biodegraded as a result of microbial processes. In this paper, a biodegradability assay in similar conditions to those recommended in OECD tests of enantiomers of trimeprazine (a phenothiazine employed as a racemate) is carried out. Experiments were performed in batch mode using a minimal salts medium inoculated with an activated sludge (collected from a Valencian Waste Water Treatment Plant, WWTP) and supplemented with the racemate. The concentration of the enantiomers of trimeprazine were monitored by means of a chiral HPLC method using a cellulose-based chiral stationary phase and 0.5 M NaClO4/acetonitrile (60:40, v/v) mobile phases. Experiments were performed at three concentration levels of the racemate. In parallel, the optical density at 600 nm (OD600) was measured to control the biomass growth and to connect it with enantioselectivity. The calculated enantiomeric fractions (EF) offer the first evidence of enantioselective biodegradation of trimeprazine. A simplified Monod equation was used as a curve fitting approach for concentration (S), biodegradation (BD), and for the first time, EF experimental data in order to expand the usefulness of the results. Precision studies on S (repeatability conditions) and, for the first time, EF (intermediate precision conditions) were also performed.


Subject(s)
Antipruritics/metabolism , Trimeprazine/metabolism , Water Pollutants, Chemical/metabolism , Antipruritics/chemistry , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Sewage , Stereoisomerism , Trimeprazine/chemistry , Water Pollutants, Chemical/chemistry
18.
Anal Chem ; 89(22): 12231-12236, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29083863

ABSTRACT

Inkjet printing technology has emerged as an alternative manufacturing method for low-cost production of electrodes. Despite significant progress, there is still a lack in the production of ion-selective electrodes. Herein, the two-step fabrication of the first inkjet-printed sulfide-selective electrode (IPSSE) is described. The two-step fabrication consists of printing a silver electrode followed by an electrochemical deposition of sulfide to produce a second kind electrode (Ag/Ag2S). The performance of this novel device was tested using potentiometric measurements. Nernstian response (-29.4 ± 0.3 mV·decade-1) was obtained within concentrations of 0.03-50 mM with a response time of ∼3 s. Furthermore, river/sea-spiked environmental samples and samples from a bioreactor for sulfate reduction to sulfide were measured and compared against a commercial sensor giving no significant differences. The IPSSE described in this work showed good reproducibility and durability during daily measurements over 15 days without any special storage conditions. Considering all the current challenges in inkjet-printed ion-selective electrodes, this different fabrication approach opens a new perspective for mass production of all-solid state ion-selective electrodes.

19.
Sensors (Basel) ; 15(2): 2798-811, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25633600

ABSTRACT

Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.


Subject(s)
Biosensing Techniques , Esterases/isolation & purification , Lipase/isolation & purification , Butyrates/chemistry , Hydrogen-Ion Concentration , Kinetics , Temperature
20.
J Hazard Mater ; 280: 200-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25151242

ABSTRACT

Biotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H2S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130s, H2S loading rate of 52gS-H2Sm(-3)h(-1) and pH 2.50-2.75. The EBRT reduction showed that the critical EBRT was 75s and the maximum EC 100gS-H2Sm(-3)h(-1). Stepwise increases of the inlet H2S concentration up to 10,000 ppmv lead to a maximum EC of 220gS-H2Sm(-3)h(-1). The H2S removal profile along the filter bed indicated that the first third of the filter bed was responsible for 70-80% of the total H2S removal. The oxidation rate of solid sulfur accumulated inside the bioreactor during periodical H2S starvation episodes was verified under acidic operating conditions. The performance under acidic pH was comparable to that under neutral pH in terms of H2S removal capacity. However, bioleaching of the metallic packing used as support and chemical precipitation of sulfide/sulfur salts occurred.


Subject(s)
Biofuels , Bioreactors , Hydrogen Sulfide/isolation & purification , Aerobiosis , Filtration , Oxidation-Reduction , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL