Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886623

ABSTRACT

PI3K-δ inhibitors have shown impressive activity in lymphoid malignancies but have been hampered by autoimmune and infectious toxicities, leading to market withdrawals. We previously demonstrated activity of the PI3K-δγ inhibitor duvelisib in T cell lymphomas (TCLs) that was associated with inflammatory adverse events. As reported here, we conducted a phase 1b/2a study of duvelisib in combination with either romidepsin (n = 66) or bortezomib (n = 32) in patients with relapsed/refractory TCL and found that the addition of romidepsin, but not bortezomib, appeared to increase efficacy while attenuating PI3K inhibitor-driven toxicity. The primary endpoint of the study was to determine the safety and maximum tolerated dose of duvelisib, which was 75 mg twice daily when combined with romidepsin versus 25 mg twice daily when combined with bortezomib. The most common adverse events were neutropenia (42%, 25/59) and fatigue (37%, 22/59) in patients treated with duvelisib and romidepsin and diarrhea (48%, 11/23) and neutropenia (30%, 7/23) in patients treated with duvelisib and bortezomib. Duvelisib and romidepsin resulted in less grade 3/4 hepatotoxicity (14%, 8/59) compared to 40% (14/35) in our previous study with duvelisib monotherapy. This was associated with reductions in circulating inflammatory mediators and myeloid cell inflammatory gene expression. Secondary endpoints of overall and complete response rates were 55% (35/64) and 34% (22/64) for patients treated with duvelisib and romidepsin and 34% (11/32) and 13% (4/32) for patients treated with duvelisib and bortezomib. Among patients with peripheral T cell lymphomas (PTCLs), overall and complete response rates of duvelisib and romidepsin were 56% (27/48) and 44% (21/48), respectively, with exploratory analyses showing increased response rates in patients with a follicular helper T cell subtype. These findings support further development of combined PI3K and histone deacetylase (HDAC) inhibition in TCLs and suggest a unique strategy to enable PI3K inhibitor-based combinations for additional patient populations. ClinicalTrials.gov identifier: NCT02783625 .

2.
bioRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38328071

ABSTRACT

Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.

3.
Gastroenterology ; 166(5): 859-871.e3, 2024 05.
Article in English | MEDLINE | ID: mdl-38280684

ABSTRACT

BACKGROUND & AIMS: The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS: A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS: TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS: This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Gene Expression Profiling , Pancreatic Neoplasms , Precision Medicine , Transcriptome , Tumor Microenvironment , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Biomarkers, Tumor/genetics , Male , Female , Middle Aged , Aged , Gene Expression Regulation, Neoplastic , Immunotherapy/methods , Prognosis , Neoadjuvant Therapy , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Predictive Value of Tests , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Databases, Genetic
4.
J Clin Oncol ; 42(4): 467-480, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38079587

ABSTRACT

PURPOSE: A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS: CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS: CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION: CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , B-Lymphocytes/pathology , Rituximab/therapeutic use , Vincristine/therapeutic use , Biomarkers , Doxorubicin/therapeutic use , Cyclophosphamide/therapeutic use , Prednisone/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prognosis
5.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37364933

ABSTRACT

BACKGROUND: PD-1 checkpoint blockade therapy (CBT) has greatly benefited patients with select solid tumors and lymphomas but has limited efficacy against diffuse large B-cell lymphoma (DLBCL). Because numerous inhibitory checkpoint receptors have been implicated in driving tumor-specific T cell dysfunction, we hypothesized that combinatorial CBT would enhance the activity of anti-PD-1-based therapy in DLBCL. T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is a coinhibitory receptor expressed on dysfunctional tumor-infiltrating T cells, and TIGIT blockade has demonstrated encouraging activity in combination with PD-1 blockade in murine tumor models and in clinical studies. However, the degree to which TIGIT mediates T cell dysfunction in DLBCL has not been fully explored. RESULTS: Here, we demonstrate that TIGIT is broadly expressed on lymphoma-infiltrating T cells (LITs) across a variety of human lymphomas and is frequently coexpressed with PD-1. TIGIT expression is particularly common on LITs in DLBCL, where TIGIT+ LITs often form distinct cellular communities and exhibit significant contact with malignant B cells. TIGIT+/PD-1+ LITs from human DLBCL and murine lymphomas exhibit hypofunctional cytokine production on ex vivo restimulation. In mice with established, syngeneic A20 B-cell lymphomas, TIGIT or PD-1 mono-blockade leads to modest delays in tumor outgrowth, whereas PD-1 and TIGIT co-blockade results in complete rejection of A20 lymphomas in most mice and significantly prolongs survival compared with mice treated with monoblockade therapy. CONCLUSIONS: These results provide rationale for clinical investigation of TIGIT and PD-1 blockade in lymphomas, including DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Programmed Cell Death 1 Receptor , Humans , Animals , Mice , Receptors, Immunologic/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology
6.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34244308

ABSTRACT

BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.


Subject(s)
Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Aged , Aged, 80 and over , Cancer Vaccines/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/metabolism , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation
7.
Clin Cancer Res ; 26(18): 4756-4766, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32641434

ABSTRACT

PURPOSE: We examined cabazitaxel, a novel next-generation taxoid, in patients with metastatic gastric cancer in a multicenter phase II study. PATIENTS AND METHODS: Patients who have progressed on one or more prior therapies for locally advanced, unresectable, or metastatic disease were eligible, and prior taxane therapy was allowed. Taxane-naïve and pretreated cohorts were analyzed independently for efficacy. The primary endpoint for both cohorts was progression-free survival (PFS) using RECIST 1.1, using a Simon's two-stage design (10% significance and 80% power) for both cohorts. Comprehensive molecular annotation included whole exome and bulk RNA sequencing. RESULTS: Fifty-three patients enrolled in the taxane-naïve cohort (Arm A) and 23 patients in the prior-taxane cohort (Arm B), from January 8, 2013, to April 8, 2015: median age 61.7 years (range, 35.5-91.8 years), 66% male, 66% Caucasian. The most common adverse events included neutropenia (17% Arm A and 39% Arm B), fatigue/muscle weakness (13%), and hematuria (12%). In Arm A, the 3-month PFS rate was 28% [95% confidence interval (CI), 17%-42%] and did not meet the prespecified efficacy target. The 3-month PFS rate in Arm B was 35% (95% CI, 16%-57%) and surpassed its efficacy target. HER2 amplification or overexpression was associated with improved disease control (P = 0.003), PFS (P = 0.04), and overall survival (P = 0.002). An M2 macrophage signature was also associated with improved survival (P = 0.031). CONCLUSIONS: Cabazitaxel has modest activity in advanced gastric cancer, including in patients previously treated with taxanes. Her2 amplification/overexpression and M2 high macrophage signature are potential biomarkers for taxane efficacy that warrant further evaluation.


Subject(s)
Adenocarcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Receptor, ErbB-2/genetics , Stomach Neoplasms/drug therapy , Taxoids/administration & dosage , Tumor-Associated Macrophages/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Progression-Free Survival , Receptor, ErbB-2/analysis , Response Evaluation Criteria in Solid Tumors , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Taxoids/adverse effects
8.
Cancer Cell ; 37(4): 551-568.e14, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32289277

ABSTRACT

The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/genetics , Molecular Targeted Therapy , Animals , Apoptosis , Cell Proliferation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Precision Medicine , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...