Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 242(Pt A): 113-125, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29966835

ABSTRACT

Tropospheric ozone (O3) concentrations have now reached levels that can potentially affect crop production in several regions of the world. The interacting effects of the elevated O3 and temperature on plants are still unclear and their consequences on the rhizosphere microbial communities never studied yet. Here, we conducted a 3-week fumigation experiment on two cultivars of wheat with different tolerance to O3 (Premio and Soissons) at two temperatures (20 °C and 30 °C). The impacts of O3 were measured on plants physiology, rhizosphere chemical environment and microbial communities. Globally, most of the results showed that elevated O3 effects were more pronounced at 20 °C than 30 °C, especially on the most O3-sensitive cultivar (Soissons). Elevated O3 reduced significantly plant root biomass (up to -37% for Soissons) compared to non-fumigated plants. A decrease in the dissolved organic matter with a relative increase of aromatic compounds concentration was also observed under elevated O3, suggesting quantitative and qualitative impacts on roots exudation. While bacterial abundance was negatively affected by O3 plant stress, fungal abundance was found to be stimulated (up to 12 fold compared to non-fumigated plants for Soissons at 20 °C). These changes were accompanied by modifications of the genetic structures and metabolic profiles, with a relative increase of amino acids catabolism. This fully controlled laboratory experiment showed that the effects of elevated O3 on soil microbial communities i) are plant-mediated and depend on the cultivar sensitivity, ii) decrease in warming condition, iii) increase the fungi to bacteria ratio and iv) alter both the genetic structure and the metabolic activities. This study highlights the importance of considering interactive effects between pollutants and climate changes on plant-microbe relationship to better inform models and improve predictions of future states of agroecosystems.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Rhizosphere , Soil Microbiology , Triticum/drug effects , Bacteria/drug effects , Biomass , Fungi/drug effects , Soil/chemistry , Temperature , Triticum/microbiology , Triticum/physiology
2.
Sci Total Environ ; 563-564: 693-703, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-26524994

ABSTRACT

Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone.


Subject(s)
Environmental Restoration and Remediation/methods , Medicago sativa/metabolism , Metals, Heavy/metabolism , Petroleum Pollution , Pseudomonas aeruginosa/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental
3.
Plant Biol (Stuttg) ; 17(5): 973-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25683278

ABSTRACT

Leaf senescence is characterised by a massive degradation of proteins in order to recycle nitrogen to other parts of the plant, such as younger leaves or developing grain/seed. Protein degradation during leaf senescence is a highly regulated process and it is suggested that proteins to be degraded are marked by an oxidative modification (carbonylation) that makes them more susceptible to proteolysis. However, there is as yet no evidence of an increase in protein carbonylation level during natural leaf senescence. The aim of our study was thus to monitor protein carbonylation level during the process of natural senescence in the flag leaf of field-grown winter wheat plants. For this purpose, we adapted a fluorescence-based method using fluorescein-5-thiosemicarbazide (FTC) as a probe for detecting protein carbonyl derivatives. As used for the first time on plant material, this method allowed the detection of both quantitative and qualitative modifications in protein carbonyl levels during the last stages of wheat flag leaf development. The method described herein represents a convenient, sensitive and reproducible alternative to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based method. In addition, our analysis revealed changes in protein carbonylation level during leaf development that were associated with qualitative changes in protein abundance and carbonylation profiles. In the senescing flag leaf, protein carbonylation increased concomitantly with a stimulation of endoproteolytic activity and a decrease in protein content, which supports the suggested relationship between protein oxidation and proteolysis during natural leaf senescence.


Subject(s)
Fluoresceins/chemistry , Protein Carbonylation , Triticum/physiology , Cellular Senescence , Edible Grain/physiology , Nitrogen/metabolism , Phenylhydrazines/chemistry , Plant Leaves/physiology , Sensitivity and Specificity , Staining and Labeling
4.
Plant Biol (Stuttg) ; 11 Suppl 1: 35-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19778366

ABSTRACT

The tropospheric level of the phytotoxic air pollutant ozone has increased considerably during the last century, and is expected to continue to rise. Long-term exposure of higher plants to low ozone concentrations affects biochemical processes prior to any visible symptoms of injury. The current critical level of ozone used to determine the threshold for damaging plants (biomass loss) is still based on the seasonal sum of the external concentration above 40 nl.l(-1) (AOT40). Taking into account stomatal conductance and the internal capacity of leaf defences, a more relevant concept should be based upon the 'effective ozone flux', the balance between the stomatal flux and the intensity of cellular detoxification. The large decrease in the Rubisco/PEPc ratio reflects photosynthetic damage from ozone, and a large increase in activity of cytosolic PEPc, which allows increased malate production. Although the direct detoxification of ozone (and ROS produced from its decomposition) is carried out primarily by cell wall ascorbate, the existing level of this antioxidant is not sufficient to indicate the degree of cell sensitivity. In order to regenerate ascorbate, NAD(P)H is needed as the primary supplier of reducing power. It is hypothesised that increased activity of the catabolic pathways and associated shunts (glucose-6-phosphate dehydrogenase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme) can provide sufficient NAD(P)H to maintain intracellular detoxification. Thus, measurement of the level of redox power would contribute to determination of the 'effective ozone dose', serving ultimately to improve the ozone risk index for higher plants.


Subject(s)
Ozone/toxicity , Plants/drug effects , Plants/metabolism , Gene Expression Regulation, Plant/drug effects , Models, Biological , NADP/metabolism , Oxidants, Photochemical/toxicity , Oxidation-Reduction/drug effects
5.
Clin Physiol ; 6(6): 589-601, 1986 Dec.
Article in English | MEDLINE | ID: mdl-3791894

ABSTRACT

Ventilatory and mouth occlusion pressure (P0.1) responses to progressive isocapnic-hypoxia and hyperoxic-hypercapnia were compared in eleven healthy sleeping men during the same night. Hypoxic and hypercapnic responses were determined during wakefulness, non-rapid and rapid-eye-movement sleep. The following parameters were measured: minute ventilation (VE), tidal volume (VT), 'duty cycle' (TI/TT), mean inspiratory flow rate (VT/TI) and P0.1, an index of the neuromuscular inspiratory drive. To allow a direct comparison between the two types of chemostimuli, responses were characterized by the value of the different parameters at 'equivalent' levels of hypoxia and hypercapnia, i.e., at levels which produced the same P0.1 during wakefulness: an oxyhaemoglobin saturation (Sao2) of 94% during the isocapnic-hypoxic tests (PETCO2 = 42.5 +/- 1.2 mmHg) was found to be equivalent to a PETCO2 of 47.4 +/- 3.7 mmHg during hypoxic-hypercapnic tests. For both tests, the arousal levels of the stimulus and of P0.1 were similar in all sleep stages. Sleep did not significantly modify P0.1 or breathing pattern responses to hypoxia (Sao2 = 94%). In contrast, at the 'equivalent' level of hypercapnic stimulation, P0.1 (P less than 0.05) and VE (P less than 0.01) responses were significantly impaired, particularly in REM sleep, with a decrease in VT (P less than 0.01) and VT/TI (P less than 0.05) responses. The results suggest that CO2 intracranial receptor mechanisms are more affected by sleep than the O2 peripheral receptor activity.


Subject(s)
Hypercapnia/physiopathology , Hypoxia/physiopathology , Respiration , Sleep Stages/physiology , Adult , Electroencephalography , Humans , Male , Middle Aged , Respiratory Function Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL