Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Pharmaceutics ; 16(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204415

ABSTRACT

This study investigates the use of camel milk-derived exosomes (CMEs) as carriers for ARV-825, an anticancer agent targeting bromodomain-containing protein 4 (BRD4), in oral chemotherapy. CMEs were isolated and characterized, and ARV-825-loaded CME formulations were prepared and evaluated through various in vitro and in vivo tests. The ARV-825-CME formulation exhibited an entrapment efficiency of 42.75 ± 5.05%, a particle size of 136.8 ± 1.94 nm, and a zeta potential of -32.75 ± 0.70 mV, ensuring stability and sustained drug release. In vitro studies showed a 5.4-fold enhancement in drug release kinetics compared to the free ARV-825 solution. Permeability studies indicated a 3.2-fold increase in apparent permeability, suggesting improved cellular uptake. Cytotoxicity assays demonstrated potent anticancer activity, with IC50 values decreasing by 1.5 to 2-fold in cancer cell lines SF8628 DIPG and H1975R (resistant to Osimertinib). In vivo pharmacokinetic studies in Sprague-Dawley rats revealed superior systemic absorption and bioavailability of ARV-825 from CMEs, with a 2.55-fold increase in plasma concentration and a 5.56-fold increase in AUC. Distribution studies confirmed absorption through the ileum. This research highlights the potential of CMEs as a promising delivery platform for ARV-825, enhancing its therapeutic efficacy and offering a novel approach to cancer treatment.

3.
Int J Pharm ; 663: 124375, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38914353

ABSTRACT

The potential of camel milk-derived exosomes (CMDE) to enhance the bioavailability of Cannabidiol (CBD) was investigated. CBD-CMDE formulation was prepared using an established procedure and its particle size was 138.4 ± 4.37 nm, and CBD entrapment efficiency of 56.56 ± 4.26 %. In-vitro release studies showed release of 78.27 ± 5.37 % and 46.42 ± 4.75 % CBD from CMDE and control CBD formulation respectively in pH 6.8 at 24 hr. The apparent permeability (Papp) of CBD-CMDE was found to be enhanced by 3.95-fold with Papp of 22.9*10-6 ± 0.34 cm/sec as compared to control CBD formulation with Papp of 5.8*10-6 ± 0.65 cm/sec in MDCK cells. CBD-CMDE was found to be more potent than CBD in 2D cytotoxicity assay with IC50 values of 3.6 ± 0.54 µM, 3.88 ± 0.54 µM and 7.53 ± 0.59 µM, 7.53 ± 0.59 µM against Doxorubicin (DOX) resistant MDA-MB-231 and Rapamycin (RM) resistant MDA-MB-468 breast cancer cells respectively. Moreover, 3D spheroids assay results demonstrated CBD-CMDE with IC50 values of 14 ± 0.85 µM, 15 ± 0.07 µM as compared to CBD alone with IC50 values of 25 ± 0.93 µM, 34.7 ± 0.08 µM in MDA-MB-231 DOX RT cells and MDA-MB-468 RM RT cells respectively. In-vivo PK studies showed enhanced bioavailability of CBD from CBD-exosomes with AUC(0-24h) of 1350.56 ± 187.50 h.ng/mL as compared to CBD control formulation with AUC(0-24h) of 351.95 ± 39.10 h.ng/mL with a single oral dose of 12 mg/kg. The data indicate that CMDE significantly improved the oral bioavailability of CBD. Overall, CMDE can be used to enhance the oral absorption of poorly bioavailable APIs.


Subject(s)
Biological Availability , Breast Neoplasms , Camelus , Cannabidiol , Drug Resistance, Neoplasm , Exosomes , Milk , Animals , Humans , Milk/chemistry , Cannabidiol/pharmacokinetics , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Cannabidiol/pharmacology , Cell Line, Tumor , Breast Neoplasms/drug therapy , Female , Drug Resistance, Neoplasm/drug effects , Dogs , Madin Darby Canine Kidney Cells , Administration, Oral , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Liberation , Cell Survival/drug effects , Rats, Sprague-Dawley , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
4.
J Pharm Pharmacol ; 76(6): 616-626, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38656627

ABSTRACT

OBJECTIVE: The objective of the present study was to enhance the bioavailability of cannabidiol (CBD) using 3D Digital Light Processing (DLP)-printed microneedle (MN) transdermal drug delivery system. METHODS: CBD MN patch was fabricated and optimized using 3D DLP printing using CBD (8% w/v), Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) (0.49% w/v), distilled water (20% w/v), and poly (ethylene glycol) dimethacrylate 550 (PEGDAMA 550) (up to 100% w/v). CBD MNs were characterized for their morphology, mechanical strength, in vitro release study, ex vivo permeation study, and in vivo pharmacokinetic (PK) profile. KEY FINDINGS: Microscopic images showed that sharp CBD MNs with a height of ~800 µm, base diameter of ~250 µm, and tip with a radius of curvature (RoC) of ~15 µm were successfully printed using optimized printing parameters. Mechanical strength studies showed no significant deformation in the morphology of CBD MNs even after applying 0.5N/needle force. Ex vivo permeation study showed significant (P < .0001) permeation of CBD in the receiving media as compared to CBD patch (control). In vivo PK study showed significantly (P < .05) enhanced bioavailability in the case of CBD MN patch as compared to CBD subcutaneous inj. (control). CONCLUSION: Overall, systemic absorption of CBD was significantly enhanced using 3D-printed MN drug delivery system.


Subject(s)
Administration, Cutaneous , Biological Availability , Cannabidiol , Drug Delivery Systems , Needles , Printing, Three-Dimensional , Transdermal Patch , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/administration & dosage , Rats , Male , Skin Absorption , Rats, Sprague-Dawley , Microinjections/methods , Drug Liberation
5.
Pharmaceutics ; 16(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38258094

ABSTRACT

In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis, and atomic force microscopy imaging revealed vesicles with a spherical form and sizes meeting the criteria of exosomal EVs. Further, Western blot studies demonstrated the presence of regular EV markers along with specific NK markers (perforin and granzyme). EVs were also characterized by proteomic analysis, which demonstrated that EVs had proteins for natural killer cell-mediated cytotoxicity (Granzyme B) and T cell activation (perforin and plastin-2). Gene oncology analysis showed that these differentially expressed proteins are involved in programmed cell death and positive regulation of cell death. Further, isolated NK-EVs were cytotoxic to H1975R cells in vitro in 2D and 3D cell cultures. CBP's IC50 was reduced by approximately in 2D and 3D cell cultures when combined with NK-EVs. The EVs were then combined with CBP and administered by i.p. route to H1975R tumor xenografts, and a significant reduction in tumor volume in vivo was observed. Our findings show for the first time that NK-EVs target the PD-L1/PD-1 immunological checkpoint to induce apoptosis and anti-inflammatory response by downregulation of SOD2, PARP, BCL2, SET, NF-κB, and TGF-ß. The ability to isolate functional NK-EVs on a large scale and use them with platinum-based drugs may lead to new clinical applications. The results of the present study suggest the possibility of the combination of NK-cell-derived EVs and CBP as a viable immunochemotherapeutic strategy for resistant cancers.

7.
AAPS PharmSciTech ; 24(4): 88, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977867

ABSTRACT

The objective of the present study was to develop digital light processing (DLP) 3D printed sustained release ibuprofen (IBU) tablets using 3D DLP printers for evaluation in in vitro release and in vivo pharmacokinetic studies with their in vitro-in vivo correlation. The resin formulation and printing parameters were optimized using quality by design (QbD) approach, and IBU tablets were printed using DLP printers which works at 385 and 405 nm wavelengths. Our results demonstrated that formulation consisting of polyethylene glycol diacrylate (PEGDA) 700, water, IBU, and riboflavin printed at 40-s bottom layer exposure time and 30-s exposure time produced tablets using both 385 and 405 nm wavelengths. In vitro dissolution studies showed > 70% drug release at the end of 24 h when printed at 405 nm wavelength with no significant difference between tablets printed at 385 nm. In vivo pharmacokinetic evaluation of the optimized 3D printed tablets printed at 405 nm at oral dose of 30 mg/kg in rats showed sustained release of IBU with significantly (p < 0.05) higher Cmax of 30.12 ± 2.45 µg/mL and AUC(0-24 h) of 318.97 ± 16.98 (µg/mL × h) compared to marketed IBU tablet (control). In vivo-in vitro correlation studies showed 80% of drug was absorbed in vivo within 3 h from the pulverized 3D printed tablet, whereas intact 3D tablet showed sustained release of IBU with > 75% IBU release in 24 h in vitro. Overall, IBU tablets fabricated using DLP printing demonstrated sustained release and enhanced systemic absorption with no significant difference in their release profile at different wavelengths.


Subject(s)
Ibuprofen , Research Design , Animals , Rats , Delayed-Action Preparations , Drug Liberation , Tablets , Printing, Three-Dimensional , Technology, Pharmaceutical/methods
8.
Int J Pharm ; 636: 122647, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36754185

ABSTRACT

The objective of the present study was to fabricate microneedles for delivering lipophilic active ingredients (APIs) using digital light processing (DLP) printing technology and quality by design (QbD) supplemented by artificial intelligence (AI) algorithms. In the present study, dissolvable microneedle (MN) patches using ibuprofen (IBU) as a model drug were successfully fabricated with DLP printing technology at âˆ¼ 750 µm height, ∼250 µm base diameter, and tip with radius of curvature (RoC) of âˆ¼ 15 µm. MN patches were comprised of IBU, photoinitiator, Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), polyethylene glycol dimethacrylate (PEGDAMA)550 and distilled water and were developed using the QbD optimization approach. Optimization of print fidelity and needle morphology were achieved using AI implementing a semi-supervised machine learning approach. Mechanical strength tests demonstrated that IBU MNs formed pores both on Parafilm M® and human cadaver skin. IBU-MNs consisting of 0.23 %w/v and 0.49 %w/v LAP with 10 %w/v water showed âˆ¼ 2 mg/cm2 sustained drug permeation at 72 h in skin permeation experiments with flux of âˆ¼ 40 µg/cm2/h. Pharmacokinetic studies in rats displayed biphasic rapid first-order absorption with sustained zero-order input of Ko = 150ug/hr, AUC0-48h = 62812.02 ± 11128.39 ng/ml*h, Tmax = 2.66 ± 1.12 h, and Cmax = 3717.43 ± 782.25 ng/ml (using 0.23 %w/v LAP IBU MN patch). An in vitro in vivo relation (IVIVR) was conducted identifying a polynomial relationship between patch release and fraction absorbed in vivo. This study demonstrates fabrication of dissolvable DLP-printed microneedle patches for lipophilic API delivery with biphasic rapid first-order and sustained zero-order release.


Subject(s)
Artificial Intelligence , Skin , Humans , Rats , Animals , Administration, Cutaneous , Pharmaceutical Preparations , Drug Delivery Systems , Ibuprofen , Printing, Three-Dimensional , Needles , Transdermal Patch
9.
Pharmaceutics ; 15(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36839877

ABSTRACT

In cancer patients, chronic paclitaxel (PTX) treatment causes excruciating pain, limiting its use in cancer chemotherapy. The neuroprotective potential of synthetic cannabidiol (CBD) and CBD formulated in extracellular vesicles (CBD-EVs) isolated from human umbilical cord derived mesenchymal stem cells was investigated in C57BL/6J mice with PTX-induced neuropathic pain (PIPN). The particle size of EVs and CBD-EVs, surface roughness, nanomechanical properties, stability, and release studies were all investigated. To develop neuropathy in mice, PTX (8 mg/kg, i.p.) was administered every other day (four doses). In terms of decreasing mechanical and thermal hypersensitivity, CBD-EVs treatment was superior to EVs treatment or CBD treatment alone (p < 0.001). CBD and CBD-EVs significantly reduced mitochondrial dysfunction in dorsal root ganglions and spinal homogenates of PTX-treated animals by modulating the AMPK pathway (p < 0.001). Studies inhibiting the AMPK and 5HT1A receptors found that CBD did not influence the neurobehavioral or mitochondrial function of PIPN. Based on these results, we hypothesize that CBD and CBD-EVs mitigated PIPN by modulating AMPK and mitochondrial function.

10.
Biochimie ; 208: 19-30, 2023 May.
Article in English | MEDLINE | ID: mdl-36535544

ABSTRACT

The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-ß, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX's chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.


Subject(s)
Cannabidiol , Cannabinoids , Mice , Animals , Humans , Cannabidiol/pharmacology , Mice, Nude , Heterografts , Doxorubicin/pharmacology
11.
AAPS PharmSciTech ; 23(7): 257, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114430

ABSTRACT

Hot melt extrusion (HME) has been used for the formulation of topical solid lipid nanoparticle (SLN) gel without using any other size reduction technique including high pressure homogenization or sonication. SLN formulation solely using HME has not been applied to other drugs except IBU. Therefore, the purpose of the present study was to formulate FLB SLN solely using HME technique and evaluate the SLN formulation in inflammation animal model. Stable 0.5% w/v FLB SLN gel with particle size < 250 nm, PI < 0.3 and EE of > 98% was prepared. Differential scanning calorimetry (DSC) thermogram showed that the drug was converted to amorphous form in the HME process. Additionally, rheological studies demonstrated that FLB SLN gel and marketed FLB gel showed shear thinning property. FLB SLN formulation showed significantly (p < 0.05) higher peak force required to spread the formulation as compared to marketed FLB formulation. Stability studies showed that FLB SLN gel was stable for a month at room temperature and 2-4°C. Moreover, in vitro permeation test (IVPT) and ex vivo skin deposition study results revealed that FLB SLN gel showed significant (p < 0.05) increase in drug deposition in dermal layer and drug permeation as compared to control marketed formulation. Further, in vivo anti-inflammatory study showed equivalent inhibition of rat paw edema using 0.5% w/v FLB SLN gel which has 10 times less strength compared to control formulation. Overall, FLB SLN formulation was successfully manufactured solely using HME technique which resulted in enhanced the skin permeation of FLB and superior anti-inflammatory activity.


Subject(s)
Flurbiprofen , Hot Melt Extrusion Technology , Animals , Anti-Inflammatory Agents , Drug Carriers/chemistry , Gels , Liposomes , Nanoparticles , Rats
12.
Int J Pharm ; 624: 122016, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35863593

ABSTRACT

The objective of the present study was to enhance the transdermal permeation of cannabinoids: cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV) using chemical permeation enhancer approach and evaluate them for their anti-inflammatory effect in vivo in a paw edema model in rats. Cannabinoids gel formulations were developed using FDA approved inactive ingredients: lactic acid (LA), polyethylene glycol-400 (PEG-400), N-methyl-2 pyrrolidone (NMP), dimethyl sulfoxide (DMSO). In vitro skin permeation testing (IVPT) showed flux of âˆ¼ 13.25 µg/cm2/h for CBD, ∼9.38 µg/cm2/h for CBG and âˆ¼ 51.74 µg/cm2/h for THCV. Additionally, IVPT study showed cumulative drug permeation of 610.96 ± 88.92 µg/cm2, 432.09 ± 35.59 µg/cm2 and 2384.44 ± 42.22 µg/cm2 from CBD, CBG and THCV gel formulations respectively. Further, effect of excipients on cannabinoid permeation showed that, formulation containing lactic acid, NMP and DMSO showed significantly (p < 0.0001) enhanced flux of cannabinoids as compared to formulation without LA, NMP and DMSO. In vivo studies showed that paw edema was significantly (p < 0.0001) reduced in the groups containing CBD, CBG, THCV as compared to control and placebo formulation. In conclusion, flux of CBD, CBG and THCV was significantly enhanced using chemical permeation enhancers approach which helped in reducing rat paw edema.


Subject(s)
Cannabidiol , Cannabinoids , Animals , Rats , Dimethyl Sulfoxide , Edema/chemically induced , Edema/drug therapy , Excipients , Lactic Acid
13.
Pharmaceutics ; 14(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35745729

ABSTRACT

The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.

14.
Int Immunopharmacol ; 107: 108693, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35303507

ABSTRACT

The purpose of this study was to evaluate if phytocannabinoids, synthetic cannabidiol (CBD), and tetrahydrocannabivarin (THCV), and their combination, could protect mice from Paclitaxel-induced peripheral neuropathy (PIPN). Six groups of C57BL/6J mice (n = 6) were used in this study. The mice were given paclitaxel (PTX) (8 mg/kg/day, i.p.) on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for behavioral parameters, and dorsal root ganglions (DRG) were collected from the animals and subjected to RNA sequencing and westernblot analysis at the end of the study. On cultured DRGs derived from adult male rats, immunocytochemistry and mitochondrial functional assays were also performed. When compared to individual treatments, the combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by twofold. Targets for CBD and THCV therapy were identified by KEGG (RNA sequencing). PTX reduced the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase while increasing the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-ß, NLRP3 inflammasome, and caspase 3 in DRG homogenates of mice. Combination therapy outperformed monotherapy in reversing these protein expressions. The addition of CBD and THCV to DRG primary cultures reduced mitochondrial superoxides while increasing mitochondrial membrane potentials. WAY100135 and rimonabant altered the neuroprotective effects of CBD and THCV respectively by blocking 5-HT1A and CB1 receptors in mice and DRG primary cultures. The entourage effect of CBD and THCV against PIPN appears to protect neurons in mice via 5HT1A and CB1 receptors respectively.


Subject(s)
Cannabidiol , Cannabinoids , Neuralgia , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabinoids/pharmacology , Male , Mice , Mice, Inbred C57BL , Neuralgia/chemically induced , Neuralgia/drug therapy , Paclitaxel/adverse effects , Rats , Rodentia
15.
Int J Pharm ; 607: 120943, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34324983

ABSTRACT

Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.


Subject(s)
Breast Neoplasms , Cannabidiol , Extracellular Vesicles , Triple Negative Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin , Female , Humans , Triple Negative Breast Neoplasms/drug therapy
16.
Sci Rep ; 11(1): 372, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431915

ABSTRACT

A series of stable and ready-to-use bioinks have been developed based on the xeno-free and tunable hydrogel (VitroGel) system. Cell laden scaffold fabrication with optimized polysaccharide-based inks demonstrated that Ink H4 and RGD modified Ink H4-RGD had excellent rheological properties. Both bioinks were printable with 25-40 kPa extrusion pressure, showed 90% cell viability, shear-thinning and rapid shear recovery properties making them feasible for extrusion bioprinting without UV curing or temperature adjustment. Ink H4-RGD showed printability between 20 and 37 °C and the scaffolds remained stable for 15 days at temperature of 37 °C. 3D printed non-small-cell lung cancer (NSCLC) patient derived xenograft cells (PDCs) showed rapid spheroid growth of size around 500 µm in diameter and tumor microenvironment formation within 7 days. IC50 values demonstrated higher resistance of 3D spheroids to docetaxel (DTX), doxorubicin (DOX) and erlotinib compared to 2D monolayers of NSCLC-PDX, wild type triple negative breast cancer (MDA-MB-231 WT) and lung adenocarcinoma (HCC-827) cells. Results of flow property, shape fidelity, scaffold stability and biocompatibility of H4-RGD suggest that this hydrogel could be considered for 3D cell bioprinting and also for in-vitro tumor microenvironment development for high throughput screening of various anti-cancer drugs.


Subject(s)
Bioprinting/methods , Drug Screening Assays, Antitumor , Hydrogels/chemistry , Neoplasms/pathology , Tissue Scaffolds/chemistry , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cells, Cultured , Drug Screening Assays, Antitumor/instrumentation , Drug Screening Assays, Antitumor/methods , Humans , Ink , Lung Neoplasms/pathology , Materials Testing , Mice , Mice, Inbred NOD , Mice, Transgenic , Models, Biological , Polysaccharides/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tumor Microenvironment/physiology
17.
Drug Deliv Transl Res ; 11(3): 1156-1165, 2021 06.
Article in English | MEDLINE | ID: mdl-32880879

ABSTRACT

Sustained release formulation of noscapine (Nos) HCl could be useful in maintaining plasma Nos HCl level for prolonged period of time, which is important for chemo-sensitization. However, weakly basic drugs like Nos HCl have pH-dependent solubility. Therefore, the purpose of this study was to achieve pH-independent drug release by developing the sustained release dosage form of Nos HCl using biodegradable polymer Eudragit RLPO and FDA-approved pH modifier citric acid (CA) by hot melt extrusion (HME) technique. Nos HCl was successfully formulated using 10% CA with 91.2 ± 1.34% drug recovery through the extruder. X-ray diffraction (XRD) results showed that drug was completely dispersed in the polymer and changed to amorphous from its crystalline form. In vitro drug release studies in pH 6.8 buffer showed that formulation containing 10% CA released 70.99 ± 3.85% drug in 24 h after initial burst release of 40.04 ± 2.39% compared to formulation without CA. Furthermore, in vivo pharmacokinetic data showed the sustained release plasma concentration time curve with significant (p < 0.05) increase in area under curve (AUC) in Nos HCl extrudate compared to Nos HCl solution. Overall, HME can be used to enhance the bioavailability and achieve the pH-independent solubility of weakly basic drugs like Nos HCl. Graphical abstract.


Subject(s)
Hot Melt Extrusion Technology , Noscapine , Delayed-Action Preparations/chemistry , Drug Compounding/methods , Hot Temperature , Solubility
18.
Eur J Pharm Biopharm ; 158: 172-184, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33220423

ABSTRACT

BACKGROUND: EGFR mutated NSCLCs have been shown to employ the use of CARP-1 in overriding the signaling inhibition of tyrosine kinase inhibitors (such as Osimertinib). CFM 4.17 is a CARP-1 inhibitor which has a promising role in overcoming Tyrosine Kinase Inhibitor (TKI) resistance when used as a pre-treatment through promoting apoptosis. Lack of solubility, hydrophobicity leading to poor systemic exposure are the limitations of CFM 4.17. This can be overcome by nano lipid-based formulation (NLPF) of CFM 4.17 which can enhance systemic exposure in preclinical animal models as well as improve therapeutic efficacy in drug-resistant cancer cell lines. METHODS: Molecular docking simulation studies were performed for CFM 4.17. CFM 4.17-NLPF was formulated by melt dispersion technique and optimized using a Box-Behnken designed surface response methodology approach using Design Expert and MATLAB. In vitro, CFM 4.17 release studies were performed in simulated gastric fluids (SGF-pH-1.2) and simulated intestinal fluids (SIF- pH-6.8). Cell viability assays were performed with HCC827 and H1975 Osimertinib resistant and non-resistant cells in 2D and 3D culture models of Non-small cell lung cancer to determine the effects of CFM 4.17 pre-treatment in Osimertinib response. In vivo pharmacokinetics in rats were performed measuring the effects of NLPF on CFM 4.17 to improve the systemic exposure. RESULTS: CFM 4.17 was well accommodated in the active pocket of the active site of human EGFR tyrosine kinase. CFM 4.17 NLPF was optimized with robust experimental design with particle size less than 300 nm and % entrapment efficiency of 92.3 ± 1.23. Sustained diffusion-based release of CFM 4.17 was observed from NLPF in SGF and SIFs with Peppas and Higuchi based release kinetics, respectively. CFM 4.17 pretreatment improved response by decreasing IC50 value by 2-fold when compared to single treatment Osimertinib in both 2D monolayer and 3D spheroid assays in HCC827 and H1975 Osimertinib resistant and non-resistant cells of Non-small cell lung cancer. There were no differences between CFM 4.17 NLPF and suspension in 2D monolayer culture pretreatments; however, The 3D culture assays showed that CFM 4.17 NLPF improved combination sensitivity. Pharmacokinetic analysis showed that CFM 4.17 NLPF displayed higher AUCtot (2.9-fold) and Cmax (1.18-fold) as compared to free CFM 4.17. In contrast, the animal groups administered CFM 4.17 NLPF showed a 4.73-fold (in half-life) and a 3.07-fold increase (in MRT) when compared to equivalent dosed suspension. CONCLUSION: We have successfully formulated CFM 4.17 NLPFs by robust RSM design approach displaying improved response through sensitizing cells to Osimertinib treatment as well as improving the oral bioavailability of CFM 4.17.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Proteins/antagonists & inhibitors , Lung Neoplasms/drug therapy , Spiro Compounds/pharmacology , Thiadiazoles/pharmacology , Acrylamides/pharmacology , Acrylamides/therapeutic use , Administration, Oral , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis Regulatory Proteins/metabolism , Biological Availability , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Drug Carriers/chemistry , Drug Liberation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lipids/chemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Models, Animal , Molecular Docking Simulation , Nanoparticles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Rats , Spiro Compounds/therapeutic use , Thiadiazoles/therapeutic use
19.
Toxicol Appl Pharmacol ; 401: 115112, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32540278

ABSTRACT

Cancer stem cells (CSCs) accounts for recurrence and resistance to chemotherapy in various tumors. Efficacy of chemotherapeutic drugs is limited by tumor stromal barriers, which hinder their penetration into deep tumor sites. We have earlier shown telmisartan (Tel) pretreatment prior to Docetaxel (DTX) administration enhances anti-cancer effects in non-small cell lung cancer (NSCLC). Herein, we demonstrated for the first time the efficacy of Docetaxel liposomes (DTXPL) in combination with Tel in 3D cultures of H460 cells by using polysaccharide-based hydrogels (TheWell Biosciences) and also in xenograft model of DTX resistant H460 derived CD133+ lung tumors. DTXPL and Tel combination showed enhanced cytotoxicity in H460 WT 3D cultures by two folds. In H460 3D cultures, Tel pretreatment showed increased liposomal uptake. DTXPL and Tel combination treated tumors showed reduction in tumor volume (p < .001), increased apoptosis and downregulation of CSC markers (p < .01) in H460 WT and DTX resistant CD133+ xenograft models.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Docetaxel/administration & dosage , Drug Delivery Systems/methods , Neoplastic Stem Cells/drug effects , Telmisartan/administration & dosage , Xenograft Model Antitumor Assays/methods , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Culture Techniques , Cell Line, Tumor , Female , Humans , Liposomes , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism
20.
J Biomed Mater Res B Appl Biomater ; 108(7): 2981-2994, 2020 10.
Article in English | MEDLINE | ID: mdl-32386281

ABSTRACT

In this study we designed high-throughput 3D bioprinting of corneal equivalents which may address the need for in vitro models. In our digital 3D cornea model, average dimensions of adult cornea were converted to 3D shapes, then to G-code files which were printed by BIOX printer (CELLINK). To maintain the curvature of cornea, a support scaffold was designed using stereolithographic printer. The support scaffold could facilitate the printing of 6-12 corneas at a time thus enabling high-throughput printing. Human corneal keratocytes (HCKs) were incorporated in the optimized bio-ink, and cell-laden corneal stromal equivalents were printed. Printed structures were cross-linked by calcium chloride 100 mM, washed with Hanks' Balanced Salt Solution and incubated at 37°C in fibroblast media. Printed corneas were analyzed for live dead assay, Alamar assay, and expression of fibronectin and actin green markers. Printed corneas were able to maintain their structure, integrity, and clarity. Live dead assay and Alamar assay demonstrated that HCKs maintained high viability (>95%) for 2 weeks. HCKs in the printed corneas showed expression for fibronectin and actin green. In conclusion, high-throughput fabrication of 3D printed corneal stromal equivalents using a combination of stereolithography printing, extrusion based printing, and micro-transfer molding techniques was achieved.


Subject(s)
Bioprinting , Cornea/metabolism , Hydrogels/chemistry , Keratinocytes/metabolism , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL