Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907600

ABSTRACT

The current consumption trends, combined with the expected demographic growth in the coming years, call for a protein transition, i.e., the partial substitution of animal protein-rich foods with foods rich in proteins produced in a more sustainable way. Here, we have discussed some of the most common and promising protein sources alternative to animal proteins, namely: legumes, insects, and microorganisms (including microalgae and fungi). The primary objective was to assess their nutritional quality through the collection of digestible indispensable amino acid score (DIAAS) values available in the scientific literature. Protein digestibility corrected amino acid score (PDCAAS) values have been used where DIAAS values were not available. The ecological impact of each protein source, its nutritional quality and the potential applications in traditional foods or novel food concepts like meat analogues are also discussed. The data collected show that DIAAS values for animal proteins are higher than all the other protein sources. Soybean proteins, mycoproteins and proteins of some insects present relatively high DIAAS (or PDCAAS) values and must be considered proteins of good quality. This review also highlights the lack of DIAAS values for many potentially promising protein sources and the variability induced by the way the proteins are processed.

2.
Food Funct ; 15(1): 419-426, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38099708

ABSTRACT

Gluten-containing (GC) and gluten-free (GF) pasta consumption has been growing in recent years. The market offers a wide variety of pasta types, with differences in shape and formulation that influence the mastication process and, consequently, their nutritional behaviors (i.e. starch digestibility and glycemic response). This study investigated the effect of shape, gluten, and structural breakdown on in vitro starch digestibility and predicted the glycemic index (pGI) of GC and GF penne, spaghetti, and risoni. Pasta was cooked and minced to mimic short, intermediate, and long mastication efforts. Short mastication led to a higher number of big particles than intermediate and long mastications for all pasta samples, which was reflected in the different starch digestibility and pGI patterns. Multivariate analysis of variance showed that the three studied factors differently affected the in vitro starch digestion of pasta. Mastication effort, shape, and their interaction mainly affected the starch digestion rate and pGI. Gluten was the major factor in affecting the amount of digested starch. The results suggested that small shapes (i.e. risoni), the presence of gluten, and short mastication effort led to a lower pGI. The findings will be useful for the development of pasta products tailored to fulfill the needs of specific consumers following a rational food design approach.


Subject(s)
Glutens , Glycemic Index , Glutens/chemistry , Starch/chemistry , Mastication , Digestion , Triticum/chemistry , Flour/analysis
3.
Chempluschem ; 85(4): 776-782, 2020 04.
Article in English | MEDLINE | ID: mdl-32202701

ABSTRACT

We report herein the synthesis and photoinduced bactericidal activity of two new polymeric materials, obtained by imprinting the photosensitizer 20-(4-carboxyphenyl)-2,13-dimethyl-3,12-diethyl-[22]pentaphyrin (PCox, 1) into suitable electropolymerized dipyrromethane films. 5-Phenyl-dipyrromethane (5-ph-DP) and 5-(4-pyridyl)dipyrromethane (5-py-DP) have been selected as the monomers for the synthesis of the materials in order to assess the correlation between the substituent in C5 and the capability in Pcox uptake. Both films have been tested in their photokilling ability toward Staphylococcus aureus by using a multi-LED blue lamp at a fluence rate of 40 W/m2 . Poly-5-py-DP/PCox, with a PCox load of 10-8  mol/cm2 , achieved a 4-log reduction in microbial viability after 60 min of irradiation. The polymeric films proved to be stable over time and under oxidation conditions; in addition, no loss of photosensitizer was observed during the experiments, thus demonstrating that the bactericidal action was effectively brought by the ROS generated by PCox immobilized in the material. After use, the films were recharged with PCox, with almost complete recovery of their photodynamic efficiency.

4.
Front Microbiol ; 9: 2024, 2018.
Article in English | MEDLINE | ID: mdl-30210486

ABSTRACT

In this study, the efficacy of treatments with ozone in water and gaseous ozone against attached cells and microbial biofilms of three foodborne species, Pseudomonas fluorescens, Staphylococcus aureus, and Listeria monocytogenes, was investigated. Biofilms formed on AISI 304 stainless steel coupons from a mixture of three strains (one reference and two wild strains) of each microbial species were subjected to three types of treatment for increasing times: (i) ozonized water (0.5 ppm) by immersion in static condition, (ii) ozonized water under flow conditions, and (iii) gaseous ozone at different concentrations (0.1-20 ppm). The Excel add-in GinaFit tool allowed to estimate the survival curves of attached cells and microbial biofilms, highlighting that, regardless of the treatment, the antimicrobial effect occurred in the first minutes of treatment, while by increasing contact times probably the residual biofilm population acquired greater resistance to ozonation. Treatment with aqueous ozone under static conditions resulted in an estimated viability reduction of 1.61-2.14 Log CFU/cm2 after 20 min, while reduction values were higher (3.26-5.23 Log CFU/cm2) for biofilms treated in dynamic conditions. S. aureus was the most sensitive species to aqueous ozone under dynamic conditions. With regard to the use of gaseous ozone, at low concentrations (up to 0.2 ppm), estimated inactivations of 2.01-2.46 Log CFU/cm2 were obtained after 60 min, while at the highest concentrations a complete inactivation (<10 CFU/cm2) of the biofilms of L. monocytogenes and the reduction of 5.51 and 4.72 Log CFU/cm2 of P. fluorescens and S. aureus respectively after 60 and 20 min were achieved. Considering the results, ozone in water form might be used in daily sanitation protocols at the end of the day or during process downtime, while gaseous ozone might be used for the treatment of confined spaces for longer times (e.g., overnight) and in the absence of personnel, to allow an eco-friendly control of microbial biofilms and consequently reduce the risk of cross-contamination in the food industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...