Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20232023 02 03.
Article in English | MEDLINE | ID: mdl-36734300

ABSTRACT

This study presents the outcomes of the shared task competition BioCreative VII (Task 3) focusing on the extraction of medication names from a Twitter user's publicly available tweets (the user's 'timeline'). In general, detecting health-related tweets is notoriously challenging for natural language processing tools. The main challenge, aside from the informality of the language used, is that people tweet about any and all topics, and most of their tweets are not related to health. Thus, finding those tweets in a user's timeline that mention specific health-related concepts such as medications requires addressing extreme imbalance. Task 3 called for detecting tweets in a user's timeline that mentions a medication name and, for each detected mention, extracting its span. The organizers made available a corpus consisting of 182 049 tweets publicly posted by 212 Twitter users with all medication mentions manually annotated. The corpus exhibits the natural distribution of positive tweets, with only 442 tweets (0.2%) mentioning a medication. This task was an opportunity for participants to evaluate methods that are robust to class imbalance beyond the simple lexical match. A total of 65 teams registered, and 16 teams submitted a system run. This study summarizes the corpus created by the organizers and the approaches taken by the participating teams for this challenge. The corpus is freely available at https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-3/. The methods and the results of the competing systems are analyzed with a focus on the approaches taken for learning from class-imbalanced data.


Subject(s)
Data Mining , Natural Language Processing , Humans , Data Mining/methods
2.
Database (Oxford) ; 20222022 08 31.
Article in English | MEDLINE | ID: mdl-36043400

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset-consisting of over 30 000 articles with manually reviewed topics-was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development. Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/.


Subject(s)
COVID-19 , COVID-19/epidemiology , Data Mining/methods , Databases, Factual , Humans , PubMed , Publications
SELECTION OF CITATIONS
SEARCH DETAIL
...