Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(29): 13202-13213, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38980170

ABSTRACT

A detailed analysis of the wave functions for the M5 to 5f excitations in the linear actinyls, UO22+, NpO22+, and PuO22+, and the theoretical X-ray absorption spectra obtained with these wave functions in comparison with experimental M5-edge high-resolution X-ray absorption near-edge structure (HR-XANES) spectra is presented. The wave functions include full treatment of scalar and spin-orbit relativistic effects through the use of a Dirac-Coulomb Hamiltonian; many-body effects are included in determining the wave functions. The character of the excited states and of the active spaces to describe the wave functions for these states are investigated and analyzed. It is shown that the excited states cannot, in general, be described with a single configuration but have an essential multiconfiguration character. The characterization of the properties of the excited states and the X-ray absorption spectra was achieved through the use of novel methods.

2.
Inorg Chem ; 63(4): 1793-1802, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38232379

ABSTRACT

A detailed analysis is presented for the covalent character of the orbitals in the actinyls: UO22+, NpO22+, and PuO22+. Both the initial, or ground state, GS, configuration and the excited configurations where a 3d electron is excited into the open valence, nominally the 5f shell, are considered. The orbitals are determined as fully relativistic, four component Dirac-Coulomb Hartree-Fock solutions. Several measures, which go beyond the commonly used population analyses, are used to characterize the covalent character of an orbital in order to obtain reliable estimates of the covalency. Although there are differences in the covalent character of the orbitals for the initial and excited configurations of the different actinyls, there is a surprising similarity in the covalent character for all of the states considered. This is true both between the initial and excited configurations as well as between the different actinyls. The analysis emphasizes the 5f covalent character in the closed shell bonding orbitals and the open shell antibonding orbitals since the focus is on characterizing orbitals needed in a many-body treatment of the actinyl wave functions. However, estimates are also made of the participation of the actinide 6d in the covalent bonding.

3.
J Phys Chem A ; 128(5): 895-901, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38271996

ABSTRACT

The analysis of the C(1s) and O(1s) core-level binding energies (CLBEs) of selected molecules computed by means of total energy Hartree-Fock (ΔSCF-HF) differences shows that in some cases, the calculated values for the C(1s) are larger than the experiment, which is unexpected. The origin of these unexpected errors of the Hartree-Fock ΔSCF BEs is shown to arise from static, nondynamical, electron correlation effects which are larger for the ion than for the neutral system. Once these static correlation effects are included by using complete active space self-consistent field (CASSCF) wave functions that include internal correlation terms, the resulting ΔSCF BEs are, as expected, smaller than measured values.

4.
J Phys Condens Matter ; 35(33)2023 May 22.
Article in English | MEDLINE | ID: mdl-37168004

ABSTRACT

The electrocatalytic reduction of molecular nitrogen to ammonia-the nitrogen reduction reaction (NRR)-is of broad interest as an environmentally- and energy-friendly alternative to the Haber-Bosch process for agricultural and emerging energy applications. Herein, we review our recent findings from collaborative electrochemistry/surface science/theoretical studies that counter several commonly held assumptions regarding transition metal oxynitrides and oxides as NRR catalysts. Specifically, we find that for the vanadium oxide, vanadium oxynitride, and cobalt oxynitride systems, (a) there is no Mars-van Krevelen mechanism and that the reduction of lattice nitrogen and N2to NH3occurs by parallel reaction mechanisms at O-ligated metal sites without incorporation of N into the oxide lattice; and (b) that NRR and the hydrogen evolution reaction do occur in concert under the conditions studied for Co oxynitride, but not for V oxynitride. Additionally, these results highlight the importance of both O-ligation of the V or Co center for metal-binding of dinitrogen, and the importance of N in stabilizing the transition metal cation in an intermediate oxidation state, for effective N≡N bond activation. This review also highlights the importance and limitations ofex situandin situphotoemission-involving controlled transfer between ultra-high vacuum and electrochemistry environments, and ofoperandonear ambient pressure photoemission coupled within situstudies, in elucidating the complex chemistry relevant to the electrolyte/solid interface.

5.
Inorg Chem ; 61(45): 18077-18094, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36321847

ABSTRACT

The origin and assignment of the complex main and satellite X-ray photoelectron spectroscopy (XPS) features of the cations in ionic compounds have been the subject of extensive theoretical studies using different methods. There is agreement that within a molecular orbital model, one needs to take into account different types of configurations. Specifically, those where a core electron is removed, but no other configuration changes are made and those where in addition to ionization, there are also shake or charge-transfer changes to the ionic configuration. However, there are strong disagreements about the assignment of XPS features to these configurations. The present work is directed toward resolving the origin of main and satellite features for the Ni 2p XPS of NiO based on ab initio molecular orbital wave functions (WFs) for a cluster model of NiO. A major problem in earlier ab initio XPS studies of ionic compounds has been the use of a common set of orbitals that was not able to properly describe all the ionic configurations that contribute to the full XPS spectra. This is resolved in the present work by using orbitals that are optimized for averages of the occupations of the different configurations that contribute to the XPS. The approach of using state-averaged (SA) orbitals is validated through comparisons between different averages and through use of higher order excitations in the WFs for the ionic states. It represents a major extension of our earlier work on the main and satellite features of the Fe 2p XPS of Fe2O3 and proves the reliability and the generality of the assignments of the character and origin of the different features of the XPS obtained with orbitals optimized for SAs. These molecular orbital methods permit the characterization of the ionic states in terms of the importance of shake excitations and of the coupling of ionization of 2p1/2 and 2p3/2 spin-orbit split sub shells. The work lays the foundation for definitive assignments of the character of main and satellite XPS features and points to their origin in the electronic structure of the material.

7.
Phys Chem Chem Phys ; 24(7): 4562-4575, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129561

ABSTRACT

Although the origin and assignment of the complex XPS features of the cations in ionic compounds has been the subject of extensive theoretical work, agreement with experimental observations remains insufficient for unambiguous interpretation. This paper presents a rigorous ab initio treatment of the main and satellite features in the Fe 2p XPS of Fe2O3. This has been possible using a unique methodology for the selection of orbitals that are used to form the ionic wavefunctions. This orbital selection makes it possible to treat both the angular momentum coupling of the open shell core and valence electrons as well the shake excitations from the closed shell orbitals associated with the O ligands into the valence open shell orbitals associated with the Fe 3d shell. This allows the character of the ionic states in terms of the occupations of the open shell core and valence orbitals and of the contributions of 2p1/2 and 2p3/2 ionization to the XPS intensities to be determined. Our analysis gives strong evidence that many body effects are essential for a correct description of the ionic states and, in general the states cannot be described by a single configuration over the open shell orbitals. An important consequence is that the Fe 2p XPS intensity in most of the features arises from small contributions from the ionization to many, tens to hundreds, of often unresolved ionic states. While the usual understanding of the lower binding energy main and satellite features as being dominantly from 2p3/2 ionization is confirmed, this is not the case for the higher binding energy features where 2p1/2 and 2p3/2 ionization and shake excitations in the valence space mix strongly. Furthermore, we have been able to show that a very large fraction, 88%, of the total Fe 2p XPS intensity is contained in a relatively small binding energy range of ∼35 eV. This is relevant if one wants to extract the stoichiometry of Fe2O3 from Fe 2p/O 1s intensity ratios. Similar considerations about the importance of many-body effects are likely to be relevant for other ionic compounds as well.

8.
J Phys Condens Matter ; 34(15)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35062013

ABSTRACT

The O(1s) and C(1s) XPS core-level binding energies. BEs, have been studied as a function of the C-O internuclear distance for a large range of distances. The BE(r) for both BEs show considerable variation over the distances studied which is, however, different for the O(1s) and C(1s) BEs. The origin of the dependence on C-O distance is established and shown to involve more than the electric field generated because of the charge separation within CO being C+qand O-q. Furthermore, the BE(r) is shown to be different for Hartree-Fock and correlated wavefunctions indicating that the BE(r) can provide evidence of how electron correlation modifies the valence charge distribution. The difference between the O(1s) and C(1s) BEs is examined and it is proposed that this difference can be used as a measure of the accuracy of theoretically predicted BEs. It is believed that the features found for CO may be representative for the BE variations with geometry for other systems; an effect that has been mostly overlooked.

9.
Inorg Chem ; 60(21): 16090-16102, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34634201

ABSTRACT

Plutonium is used as a major component of new-generation nuclear fuels and of radioisotope batteries for Mars rovers, but it is also an environmental pollutant. Plutonium clearly has high technological and environmental importance, but it has an extremely complex, not well-understood electronic structure. The level of covalency of the Pu 5f valence orbitals and their role in chemical bonding are still an enigma and thus at the frontier of research in actinide science. We performed fully relativistic quantum chemical computations of the electronic structure of the Pu4+ ion and the PuO2 compound. Using four different theoretical tools, it is shown that the 5f orbitals have very little covalent character although the 5f(7/2) a2u orbital with the highest orbital energy has the greatest extent of covalency in PuO2. It is illustrated that the Pu M4,5 edge high-energy resolution X-ray absorption near-edge structure (Pu M4,5 HR-XANES) spectra cannot be interpreted in terms of dipole selection rules applied between individual 3d and 5f orbitals, but the selection rules must be applied between the total wavefunctions for the initial and excited states. This is because the states cannot be represented by single determinants. They are shown to involve major redistributions on the 5f electrons over the different 5f orbitals. These redistributions could be viewed as shake-up-like excitations in the 5f shell from the lowest orbital energy from J = 5f(5/2) into higher orbital energy J = 5f(7/2). We show that the second peak in the Pu M4 edge and the high-energy shoulder of the Pu M5 edge HR-XANES spectra probe the 5f(7/2) a2u orbital; thus, these spectral features are expected to change upon bond variations. We describe theoretical and spectroscopy tools, which can be applied for all actinide elements in materials with cubic structure.

10.
J Chem Phys ; 154(9): 094709, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33685168

ABSTRACT

The Al K alpha, 1486.6 eV, based x-ray photoelectron spectroscopy (XPS) of Fe 2p and Fe 3p for Fe(III) in Fe2O3 and Fe(II) in FeO is compared with theoretical predictions based on ab initio wavefunctions that accurately treat the final, core-hole, multiplets. The principal objectives of this comparison are to understand the multiplet structure and to evaluate the use of both the 2p and 3p spectra in determining oxidation states. In order to properly interpret the features of these spectra and to use the XPS to provide atomistic insights as well as atomic composition, it is necessary to understand the origin of the multiplet energies and intensities. The theoretical treatment takes into account the ligand field and spin-orbit splittings, the covalent mixing of ligand and Fe 3d orbitals, and the angular momentum coupling of the open shell electrons. These effects lead to the distribution of XPS intensity into a large number of final, ionic, states that are only partly resolved with energies spread over a wide range of binding energies. For this reason, it is necessary to record the Fe 2p and 3p XPS spectra over a wide energy range, which includes all the multiplets in the theoretical treatment as well as additional shake satellites. We also evaluate the effects of differing assumptions concerning the extrinsic background subtraction, to make sure our experimental spectrum may be fairly compared to the theory. We conclude that the Fe 3p XPS provides an additional means for distinguishing Fe(III) and Fe(II) oxidation states beyond just using the Fe 2p spectrum. In particular, with the use of the Fe 3p XPS, the depth of the material probed is about 1.5 times greater than for the Fe 2p XPS. In addition, a new type of atomic many-body effect that involves excitations into orbitals that have Fe f,ℓ = 3, symmetry has been shown to be important for the Fe 3p XPS.

11.
J Chem Phys ; 153(19): 194702, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33218235

ABSTRACT

The covalent character of the interaction between the metal cation and the oxygen ligands has been examined for two Fe oxides with different nominal oxidation states, Fe(II)O, and Fe(III)2O3. The covalent character is examined for the initial, ground state configuration and for the ionic states involving the removal of a shallow core, Fe 3p, and a deep core, Fe 2p, electron. The covalency is assessed based on novel theoretical analyses of wave functions for the various cases. It is found that the covalency is considerably different for different oxidation states and for different ionized and non-ionized configurations. The changes in covalency for the ions are shown to be responsible for important changes in relaxation energies for X-Ray Photoelectron Spectroscopy (XPS) spectra and in the intensity lost from main XPS peaks to shake satellites. While these consequences are not observables themselves, they are important for the interpretation of the XPS spectra, in particular, for efforts to extract stoichiometries of these iron oxides from XPS data. This is a finding likely applicable across various 3d transition metal oxide materials.

12.
Phys Chem Chem Phys ; 22(39): 22617-22626, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33015691

ABSTRACT

The equivalent core model, or the Z + 1 approximation, has been used to interpret the binding energy, BE, shifts observed in X-ray photoelectron spectroscopy, XPS; in particular to relate these shifts to their origin in the electronic structure of the system. Indeed, a recent paper has claimed that the equivalent core model provides an intuitive chemical view of XPS BE shifts. In the present paper, we present a detailed comparison of the electronic structure provided from rigorous core-hole theory and from the equivalent core model to assess the validity and the utility of the use of the equivalent core model. This comparison shows that the equivalent core model provides a qualitative view of the different properties of initial and core-hole electronic structure. It is also shown that a very serious limitation of the equivalent core model is that it fails to distinguish between initial and final state contributions to the shifts of BEs which seriously reduces the utility of the information obtained with the equivalent core model. Indeed, there is a danger of making an incorrect assignment of the importance of relaxation because the equivalent core model appears to stress the role of final state effects. Given the importance of the distinction of initial and final state effects, we provide rigorous definitions of these two effects and we discuss an example where an incorrect interpretation was made based on the use of the equivalent core model.

13.
J Chem Phys ; 152(1): 014704, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914734

ABSTRACT

The origins of the complex Fe 2p X-Ray Photoelectron Spectra (XPS) of hematite (α-Fe2O3) are analyzed and related to the character of the bonding in this compound. This analysis provides a new and novel view of the reasons for XPS binding energies (BEs) and BE shifts, which deepens the current understanding and interpretation of the physical and chemical significance of the XPS. In particular, many-body effects are considered for the initial and the final, 2p-hole configuration wavefunctions. It is shown that a one-body or one-configuration analysis is not sufficient and that the many-body, many-determinantal, and many-configurational character of the wavefunctions must be taken into account to describe and understand why the XPS intensity is spread over an extremely large number of final 2p-hole multiplets. The focus is on the consequences of angular momentum coupling of the core and valence open shell electrons, the ligand field splittings of the valence shell orbitals, and the degree of covalent mixing of the Fe(3d) electrons with the O(2p) electrons. Novel theoretical methods are used to estimate the importance of these various terms. An important consequence of covalency is a reduction in the energy separation of the multiplets. Although shake satellites are not considered explicitly, the total losses of intensity from the angular momentum multiplets to shake satellites is determined and related to the covalent character of the Fe-O interaction. The losses are found to be the same for Fe 2p1/2 and 2p3/2 ionization.

14.
Phys Chem Chem Phys ; 21(45): 25431-25438, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31712786

ABSTRACT

The relationship between the electronic structure of CaO and the binding energy, BE, shifts between surface and bulk atoms is examined and the physical origins of these shifts are established. Furthermore, the contribution of covalent mixing to the interaction, including the energetic importance, is investigated and found to be small. In particular, the small shift between surface and bulk O(1s) BEs is shown to originate from changes in the polarizable charge distribution of surface O anions. This relationship, which is relevant for the catalytic properties of CaO, follows because the BE shifts are dominated by initial state contributions and the relaxation in response to the core-ionization is similar for bulk and surface. In order to explain the dominance of initial state effects for the BE shifts, the relaxation is decomposed into atomic and extra-atomic contributions. The bonding and the core-level BE shifts have been studied using cluster models of CaO with Hartree-Fock wavefunctions. The theoretical shifts are compared with X-ray photoelectron spectroscopy measurements where both angular resolution and incident photon energy have been used to distinguish surface and bulk ionization.

15.
J Chem Phys ; 151(4): 044107, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31370546

ABSTRACT

The embedding of cluster models of oxides with point charges and with extensions of the embedding which take into account the spatial extent of the cations is examined with an emphasis on the consequences of this embedding for the relative ionization and excitation energies that are measured in core-level spectroscopies. It is found that the dependence of the electronic structure of the oxides and the relative energies of different levels depend only weakly on the embedding and that relatively simple embeddings may be sufficient to provide an adequate model for determining core-level spectra. This is different from absolute values of the ionizations which, as expected, depend strongly on the details of the extended crystal; however, relative values of binding energies, as measured in photoemission, are of greater interest than the absolute values.

16.
Phys Chem Chem Phys ; 20(6): 4396-4403, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29372200

ABSTRACT

Cluster models of condensed systems are often used to simulate the core-level spectra obtained with X-ray Photoelectron Spectroscopy, XPS, or with X-ray Absorption Spectroscopy, XAS, especially for near edge features. The main objective of this paper is to examine the dependence of the predicted L2,3 edge XAS of α-Fe2O3, an example of a high spin ionic crystal, on increasingly realistic models of the condensed system. It is shown that an FeO6 cluster model possessing the appropriate local site symmetry describes most features of the XAS and is a major improvement over the isolated Fe3+ cation. In contrast, replacing next nearest neighbor positive point charges with Sc3+, a closed shell cation of similar spatial extent to Fe3+, only marginally improves the match to experiment. This work suggests that second nearest neighbor effects are negligible. Rather, major improvements to the predicted L2,3 edge XAS likely requires additional many body effects that go beyond the present study in which the multiplets are restricted to arise from angular momentum coupling within a single open shell configuration.

17.
J Chem Phys ; 147(22): 224306, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29246056

ABSTRACT

We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L2,3 edge of FeCl4-. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison of theory and experiment for the Fe L2,3 edge and comparison of theoretical predictions for the Fe3+ cation and FeCl4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.

18.
Phys Chem Chem Phys ; 19(45): 30473-30480, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29114651

ABSTRACT

The U 4f line is commonly used to determine uranium oxidation states with X-ray photoelectron spectroscopy (XPS). In contrast, the XPS of the shallow core-levels of uranium are rarely recorded. Nonetheless, theory has shown that the U 5d (and 5p) multiplet structure is very sensitive to oxidation state. In this contribution we extracted the U(iv) and U(v) 5d XPS peak shapes from near stoichiometric and oxidized UO2 single crystal samples, respectively, where the oxidation state of U was constrained by fitting the 4f line. The empirically extracted 5d spectra were similar to the theoretically determined multiplet structures and were used, along with the relatively simple U(vi) component that was constrained by theory, to determine the oxidation states of UO2+x samples. The results showed a very strong correlation between oxidation states determined by the 5d and 4f line and suggested that the 5d might be more sensitive to minor amounts of oxidation than the 4f. Limitations of the methodology, as well as advantages of using the 5d relative to the 4f line are discussed.

19.
J Phys Chem A ; 121(40): 7613-7618, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28933158

ABSTRACT

X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green's function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

20.
J Chem Phys ; 147(2): 024106, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28711037

ABSTRACT

We use a total energy difference approach to explore the ability of various density functional theory based methods in accounting for the differential effect of static electron correlation on the C(1s) and O(1s) core level binding energies (BEs) of the CO molecule. In particular, we focus on the magnitude of the errors of the computed C(1s) and O(1s) BEs and on their relative difference as compared to experiment and to previous results from explicitly correlated wave functions. Results show that the different exchange-correlation functionals studied here behave rather erratically and a considerable number of them lead to large errors in the BEs and/or the BE shifts. Nevertheless, the TPSS functional, its TPSSm and RevTPSS derivations, and its corresponding hybrid counterpart, TPSSh, perform better than average and provide BEs and BE shifts in good agreement with experiment.

SELECTION OF CITATIONS
SEARCH DETAIL