Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 17(4): 601-608, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377633

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory illness that leads to severe acute respiratory syndrome and various cardiorespiratory complications, contributing to morbidity and mortality. Entropy analysis has demonstrated its ability to monitor physiological states and system dynamics during health and disease. The main objective of the study is to extract information about cardiorespiratory control by conducting a complexity analysis of OSV signals using scale-based entropy measures following a two-month timeframe after recovery. METHODS: This prospective study collected data from subjects meeting specific criteria, using a Beurer PO-80 pulse oximeter to measure oxygen saturation (SpO2) and pulse rate. Excluding individuals with a history of pulmonary/cardiovascular issues, the study analyzed 88 recordings from 44 subjects (26 men, 18 women, mean age 45.34 ± 14.40) during COVID-19 and two months post-recovery. Data preprocessing and scale-based entropy analysis were applied to assess OSV signals. RESULTS: The study found a significant difference in mean OSV during illness (95.08 ± 0.15) compared to post-recovery (95.59 ± 1.03), indicating reduced cardiorespiratory dynamism during COVID-19. Multiscale entropy analyses (MSE, MPE, MFE) confirmed lower entropy values during illness across all time scales, particularly at higher scales. Notably, the maximum distinction between illness and recovery phases was seen at specific time scales and similarity criteria for each entropy measure, showing statistically significant differences. CONCLUSIONS: The study demonstrates that the loss of complexity in OSV signals, quantified using scale-based entropy measures, has the potential to detect malfunctioning of cardiorespiratory control in COVID-19 patients. This finding suggests that OSV signals could serve as a valuable indicator for assessing the cardiorespiratory status of COVID-19 patients and monitoring their recovery progress.


Subject(s)
COVID-19 , Male , Humans , Female , Adult , Middle Aged , Oxygen Saturation , Prospective Studies
2.
Comput Biol Med ; 170: 108032, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310805

ABSTRACT

COVID-19, known as Coronavirus Disease 2019 primarily targets the respiratory system and can impact the cardiovascular system, leading to a range of cardiorespiratory complications. The current forefront in analyzing the dynamical characteristics of physiological systems and aiding clinical decision-making involves the integration of entropy-based complexity techniques with artificial intelligence. Entropy-based measures offer promising prospects for identifying disturbances in cardiorespiratory control system (CRCS) among COVID-19 patients by assessing the oxygen saturation variability (OSV) signals. In this investigation, we employ scale-based entropy (SBE) methods, including multiscale entropy (MSE), multiscale permutation entropy (MPE), and multiscale fuzzy entropy (MFE), to characterize the dynamical characteristics of OSV signals. These measurements serve as features for the application of traditional machine learning (ML) and deep learning (DL) approaches in the context of classifying OSV signals from COVID-19 patients during their illness and subsequent recovery. We use the Beurer PO-80 pulse oximeter which non-invasively acquired OSV and pulse rate data from COVID-19 infected patients during the active infection phase and after a two-month recovery period. The dataset comprises of 88 recordings collected from 44 subjects(26 men and 18 women), both during their COVID-19 illness and two months post-recovery. Prior to analysis, data preprocessing is performed to remove artifacts and outliers. The application of SBE measures to OSV signals unveils a reduction in signal complexity during the course of COVID-19. Leveraging these SBE measures as feature sets, we employ two DL techniques, namely the radial basis function network (RBFN) and RBFN with dynamic delay algorithm (RBFNDDA), for the classification of OSV data collected during and after COVID-19 recovery. To evaluate the classification performance, we employ standard metrics such as sensitivity, specificity, false positive rate (FPR), and the area under the receiver operator characteristic curve (AUC). Among the three scale-based entropy measures, MFE outperformed MSE and MPE by achieving the highest classification performance using RBFN with 13 best features having sensitivity (0.84), FPR (0.30), specificity (0.70) and AUC (0.77). The outcomes of our study demonstrate that SBE measures combined with DL methods offer a valuable approach for categorizing OSV signals obtained during and after COVID-19, ultimately aiding in the detection of CRCS dysfunction.


Subject(s)
COVID-19 , Deep Learning , Male , Humans , Female , Entropy , Artificial Intelligence , Electroencephalography/methods
3.
PLoS One ; 19(1): e0296722, 2024.
Article in English | MEDLINE | ID: mdl-38241330

ABSTRACT

Android is the most popular operating system of the latest mobile smart devices. With this operating system, many Android applications have been developed and become an essential part of our daily lives. Unfortunately, different kinds of Android malware have also been generated with these applications' endless stream and somehow installed during the API calls, permission granted and extra packages installation and badly affected the system security rules to harm the system. Therefore, it is compulsory to detect and classify the android malware to save the user's privacy to avoid maximum damages. Many research has already been developed on the different techniques related to android malware detection and classification. In this work, we present AMDDLmodel a deep learning technique that consists of a convolutional neural network. This model works based on different parameters, filter sizes, number of epochs, learning rates, and layers to detect and classify the android malware. The Drebin dataset consisting of 215 features was used for this model evaluation. The model shows an accuracy value of 99.92%. The other statistical values are precision, recall, and F1-score. AMDDLmodel introduces innovative deep learning for Android malware detection, enhancing accuracy and practical user security through inventive feature engineering and comprehensive performance evaluation. The AMDDLmodel shows the highest accuracy values as compared to the existing techniques.


Subject(s)
Deep Learning , Smartphone , Computers, Handheld , Engineering , Mental Recall
4.
Healthcare (Basel) ; 11(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37628478

ABSTRACT

An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications.

5.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189550

ABSTRACT

The human brain, primarily composed of white blood cells, is centered on the neurological system. Incorrectly positioned cells in the immune system, blood vessels, endocrine, glial, axon, and other cancer-causing tissues, can assemble to create a brain tumor. It is currently impossible to find cancer physically and make a diagnosis. The tumor can be found and recognized using the MRI-programmed division method. It takes a powerful segmentation technique to produce accurate output. This study examines a brain MRI scan and uses a technique to obtain a more precise image of the tumor-affected area. The critical aspects of the proposed method are the utilization of noisy MRI brain images, anisotropic noise removal filtering, segmentation with an SVM classifier, and isolation of the adjacent region from the normal morphological processes. Accurate brain MRI imaging is the primary goal of this strategy. The divided section of the cancer is placed on the actual image of a particular culture, but that is by no means the last step. The tumor is located by categorizing the pixel brightness in the filtered image. According to test findings, the SVM could partition data with 98% accuracy.

6.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900283

ABSTRACT

Explainable Artificial Intelligence (XAI) is a branch of AI that mainly focuses on developing systems that provide understandable and clear explanations for their decisions. In the context of cancer diagnoses on medical imaging, an XAI technology uses advanced image analysis methods like deep learning (DL) to make a diagnosis and analyze medical images, as well as provide a clear explanation for how it arrived at its diagnoses. This includes highlighting specific areas of the image that the system recognized as indicative of cancer while also providing data on the fundamental AI algorithm and decision-making process used. The objective of XAI is to provide patients and doctors with a better understanding of the system's decision-making process and to increase transparency and trust in the diagnosis method. Therefore, this study develops an Adaptive Aquila Optimizer with Explainable Artificial Intelligence Enabled Cancer Diagnosis (AAOXAI-CD) technique on Medical Imaging. The proposed AAOXAI-CD technique intends to accomplish the effectual colorectal and osteosarcoma cancer classification process. To achieve this, the AAOXAI-CD technique initially employs the Faster SqueezeNet model for feature vector generation. As well, the hyperparameter tuning of the Faster SqueezeNet model takes place with the use of the AAO algorithm. For cancer classification, the majority weighted voting ensemble model with three DL classifiers, namely recurrent neural network (RNN), gated recurrent unit (GRU), and bidirectional long short-term memory (BiLSTM). Furthermore, the AAOXAI-CD technique combines the XAI approach LIME for better understanding and explainability of the black-box method for accurate cancer detection. The simulation evaluation of the AAOXAI-CD methodology can be tested on medical cancer imaging databases, and the outcomes ensured the auspicious outcome of the AAOXAI-CD methodology than other current approaches.

7.
PLoS One ; 18(2): e0279311, 2023.
Article in English | MEDLINE | ID: mdl-36757994

ABSTRACT

A salinity gradient solar pond (SGSP) is capable of storing a significant quantity of heat for an extended period of time. It is a great option for providing hot water at a reduced energy cost. Additionally, SGSP is used in low-temperature industrial applications such as saltwater desalination, space heating, and power generation. Solar pond thermal performance is dependent on a variety of operational variables, including the soil conditions, the climate of the particular site, the thickness of the solar pond layers, the depth of the water table, and the salt content of the pond. As such, this study examines the thermal performance of a solar pond under a variety of operational conditions. The solar pond model is used to test the thermal performance by simulating two-dimensional heat and mass transport equations. The equations are solved using the finite difference technique utilizing MATLAB® scripts. Salt distributions and temperature profiles are computed for a variety of factors influencing SGSP's thermal performance. The main distinguishing variables influencing the thermal performance of SGSP are soil conditions, such as soil texture, types, the moisture level in soil, and water table depth. The final findings indicated that the fine sand dry soil performed better than the other soil types owing to its poor heat conductivity. The economic results indicated that the period of return (POR) of the intended system is around 2 years. The solar pond construction costs such as excavation, transportation, salt and lining, were considered based on the local prices. This modeled study extracted the greatest possible energy is 110W/m2, with the fine sand dry at 62.48°C lowest temperature. This study suggested that the climatic conditions of Lahore is better than climatic conditions of Islamabad. Additionally, deeper water tables are suggested for improved thermal performance of the pond.


Subject(s)
Ponds , Soil , Salinity , Sand , Sunlight , Sodium Chloride , Sodium Chloride, Dietary
8.
J Healthc Eng ; 2022: 9276579, 2022.
Article in English | MEDLINE | ID: mdl-35047159

ABSTRACT

Parkinson's disease (PD) affects the movement of people, including the differences in writing skill, speech, tremor, and stiffness in muscles. It is significant to detect the PD at the initial stages so that the person can live a peaceful life for a longer time period. The serious levels of PD are highly risky as the patients get progressive stiffness, which results in the inability of standing or walking. Earlier studies have focused on the detection of PD effectively using voice and speech exams and writing exams. In this aspect, this study presents an improved sailfish optimization algorithm with deep learning (ISFO-DL) model for PD diagnosis and classification. The presented ISFO-DL technique uses the ISFO algorithm and DL model to determine PD and thereby enhances the survival rate of the person. The presented ISFO is a metaheuristic algorithm, which is inspired by a group of hunting sailfish to determine the optimum solution to the problem. Primarily, the ISFO algorithm is applied to derive an optimal subset of features with a fitness function of maximum classification accuracy. At the same time, the rat swarm optimizer (RSO) with the bidirectional gated recurrent unit (BiGRU) is employed as a classifier to determine the existence of PD. The performance validation of the IFSO-DL model takes place using a benchmark Parkinson's dataset, and the results are inspected under several dimensions. The experimental results highlighted the enhanced classification performance of the ISFO-DL technique, and therefore, the proposed model can be employed for the earlier identification of PD.


Subject(s)
Deep Learning , Parkinson Disease , Algorithms , Animals , Humans , Parkinson Disease/diagnosis , Rats , Speech , Walking
9.
Biology (Basel) ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35053041

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread worldwide, and medicinal resources have become inadequate in several regions. Computed tomography (CT) scans are capable of achieving precise and rapid COVID-19 diagnosis compared to the RT-PCR test. At the same time, artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL), find it useful to design COVID-19 diagnoses using chest CT scans. In this aspect, this study concentrates on the design of an artificial intelligence-based ensemble model for the detection and classification (AIEM-DC) of COVID-19. The AIEM-DC technique aims to accurately detect and classify the COVID-19 using an ensemble of DL models. In addition, Gaussian filtering (GF)-based preprocessing technique is applied for the removal of noise and improve image quality. Moreover, a shark optimization algorithm (SOA) with an ensemble of DL models, namely recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU), is employed for feature extraction. Furthermore, an improved bat algorithm with a multiclass support vector machine (IBA-MSVM) model is applied for the classification of CT scans. The design of the ensemble model with optimal parameter tuning of the MSVM model for COVID-19 classification shows the novelty of the work. The effectiveness of the AIEM-DC technique take place on benchmark CT image data set, and the results reported the promising classification performance of the AIEM-DC technique over the recent state-of-the-art approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...