Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 54(3): 1634-1645, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31880153

ABSTRACT

Chloromethane (CH3Cl) is an important source of chlorine in the stratosphere, but detailed knowledge of the magnitude of its sources and sinks is missing. Here, we measured the stable chlorine isotope fractionation (εCl) associated with the major abiotic and biotic CH3Cl sinks in the environment, namely, CH3Cl degradation by hydroxyl (·OH) and chlorine (·Cl) radicals in the troposphere and by reference bacteria Methylorubrum extorquens CM4 and Leisingera methylohalidivorans MB2 from terrestrial and marine environments, respectively. No chlorine isotope fractionation was detected for reaction of CH3Cl with ·OH and ·Cl radicals, whereas a large chlorine isotope fractionation (εCl) of -10.9 ± 0.7‰ (n = 3) and -9.4 ± 0.9 (n = 3) was found for CH3Cl degradation by M. extorquens CM4 and L. methylohalidivorans MB2, respectively. The large difference in chlorine isotope fractionation observed between tropospheric and bacterial degradation of CH3Cl provides an effective isotopic tool to characterize and distinguish between major abiotic and biotic processes contributing to the CH3Cl sink in the environment. Our findings demonstrate the potential of emerging triple-element isotopic approaches including chlorine to carbon and hydrogen analysis for the assessment of global cycling of organochlorines.


Subject(s)
Methyl Chloride , Carbon , Carbon Isotopes , Chemical Fractionation , Chlorine
2.
Anal Bioanal Chem ; 388(2): 319-27, 2007 May.
Article in English | MEDLINE | ID: mdl-17333144

ABSTRACT

Snow surfaces play an important role in the biogeochemical cycle of mercury in high-latitude regions. Snowpacks act both as sources and sinks for gaseous compounds. Surprisingly, the roles of each environmental parameter that can govern the air-surface exchange over snow are not well understood owing to the lack of systematic studies. A laboratory system called the laboratory flux measurement system was used to study the emission of gaseous elemental mercury from a natural snowpack under controlled conditions. The first results from three snowpacks originating from alpine, urban and polar areas are presented. Consistent with observations in the field, we were able to reproduce gaseous mercury emissions and showed that they are mainly driven by solar radiation and especially UV-B radiation. From these laboratory experiments, we derived kinetic constants which show that divalent mercury can have a short natural lifetime of about 4-6 h in snow.

3.
J Environ Manage ; 81(2): 114-25, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16831509

ABSTRACT

Recent measurements at different locations suggest that the emission of mercury from soils may play a more pronounced role in the global mercury cycle as suggested by global emission inventories and global mercury cycling models. For up scaling and modelling of mercury emissions from soils a comprehensive assessment of the processes controlling the emission of mercury from soils is imperative. We have developed a laboratory flux measurement system (LFMS) to study the effect of major environmental variables on the emission of mercury under controlled conditions. We have investigated the effects of turbulent mixing, soil temperature and solar radiation on the emission of mercury from soils. The emission of mercury from soils is constant over time under constant experimental conditions. The response of the mercury emission flux to variations of the atmospheric transfer parameters such as turbulence requires a rapid adjustment of the equilibrium that controls the Hg(o) concentration in the soil air. It has been shown that the light-induced flux is independent of the soil temperature and shows a strong spectral response to UV-B.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Mercury/analysis , Soil/analysis , Computer Simulation , Kinetics , Spectrum Analysis , Sunlight , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL