Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(38): e2303621, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37243572

ABSTRACT

InAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core-shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In2 ZnSe4 crystal structure. The simulations reveal an electronic structure consistent with that of type-I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

2.
ACS Energy Lett ; 7(11): 3788-3790, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36398094

ABSTRACT

We demonstrate efficient, stable, and fully RoHS-compliant near-infrared (NIR) light-emitting diodes (LEDs) based on InAs/ZnSe quantum dots (QDs) synthesized by employing a commercially available amino-As precursor. They have a record external quantum efficiency of 5.5% at 947 nm and an operational lifetime of ∼32 h before reaching 50% of their initial luminance. Our findings offer a new solution for developing RoHS-compliant light-emitting technologies based on Pb-free colloidal QDs.

3.
Chem Soc Rev ; 51(24): 9861-9881, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36408788

ABSTRACT

Colloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives. In this regard, indium arsenide (InAs) QDs are one of the best candidates as they can absorb and emit light in the whole near infrared spectral range and they are RoHS-compliant, with recent trends suggesting that there is a renewed interest in this class of materials. This review focuses on colloidal InAs QDs and aims to provide an up-to-date overview spanning from their synthesis and surface chemistry to post-synthesis modifications. We provide a comprehensive overview from initial synthetic methods to the most recent developments on the ability to control the size, size distribution, electronic properties and carrier dynamics. Then, we describe doping and alloying strategies applied to InAs QDs as well as InAs based heterostructures. Furthermore, we present the state-of-the-art applications of InAs QDs, with a particular focus on bioimaging and field effect transistors. Finally, we discuss open challenges and future perspectives.


Subject(s)
Arsenicals , Quantum Dots , Indium/chemistry , Quantum Dots/chemistry
4.
Nanoscale ; 14(41): 15525-15532, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36239340

ABSTRACT

Advances in surface chemistry of CsPbX3 (where X = Cl, Br or I) nanocrystals (NCs) enabled the replacement of native chain ligands in solution. However, there are few reports on ligand exchange carried out on CsPbX3 NC thin films. Solid-state ligand exchange can improve the photoluminescence quantum yield (PLQY) of the film and promote a change in solubility of the solid surface, thus enabling multiple depositions of subsequent nanocrystal layers. Fine control of nanocrystal film thickness is of importance for light-emitting diodes (LEDs), solar cells and lasers alike. The thickness of the emissive material film is crucial to assure the copious recombination of charges injected into a LED, resulting in bright electroluminescence. Similarly, solar cell performance is determined by the amount of absorbed light, and hence the light absorber content in the device. In this study, we demonstrate a layer-by-layer (LbL) assembly method that results in high quality films, whose thicknesses can be finely controlled. In the solid state, we replaced oleic acid and oleylamine ligands with didodecyldimethylammonium bromide or ammonium thiocyanate that enhance the PLQY of the film. The exchange is carried out through a spin-coating technique, using solvents with strategic polarity to avoid NC dissolution or damage. Exploiting this technique, the deposition of various layers results in considerable thickening of films as proven by atomic force microscope measurements. The ease of handling of our combined process (i.e. ligand exchange and layer-by-layer deposition) enables thickness control over CsPbX3 NC films with applicability to other perovskite nanomaterials paving the way for a large variety of layer permutations.

5.
Nano Lett ; 22(21): 8567-8573, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36288498

ABSTRACT

We show how, in the synthesis of yellow-emissive Bi-doped Cs2Ag1-xNaxInCl6 double perovskite nanocrystals (NCs), preventing the transient formation of Ag0 particles increases the photoluminescence quantum yield (PLQY) of the NCs from ∼30% to ∼60%. Calculations indicate that the presence of even a single Ag0 species on the surface of a NC introduces deep trap states. The PL efficiency of these NCs is further increased to ∼70% by partial replacement of Na+ with K+ ions, up to a 7% K content, due to a lattice expansion that promotes a more favorable ligands packing on the NC surface, hence better surface passivation. A further increase in K+ lowers the PLQY, due to both the activation of nonradiative quenching channels and a lower oscillator strength of the BiCl6→AgCl6 transition (through which PL emission occurs). The work indicates how a deeper understanding of parameters influencing carrier trapping/relaxation can boost the PLQY of double perovskites NCs.

6.
J Am Chem Soc ; 144(23): 10515-10523, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35648676

ABSTRACT

The most developed approaches for the synthesis of InAs nanocrystals (NCs) rely on pyrophoric, toxic, and not readily available tris-trimethylsilyl (or tris-trimethylgermil) arsine precursors. Less toxic and commercially available chemicals, such as tris(dimethylamino)arsine, have recently emerged as alternative As precursors. Nevertheless, InAs NCs made with such compounds need to be further optimized in terms of size distribution and optical properties in order to meet the standard reached with tris-trimethylsilyl arsine. To this aim, in this work we investigated the role of ZnCl2 used as an additive in the synthesis of InAs NCs with tris(dimethylamino)arsine and alane N,N-dimethylethylamine as the reducing agent. We discovered that ZnCl2 helps not only to improve the size distribution of InAs NCs but also to passivate their surface acting as a Z-type ligand. The presence of ZnCl2 on the surface of the NCs and the excess of Zn precursor used in the synthesis enable the subsequent in situ growth of a ZnSe shell, which is realized by simply adding the Se precursor to the crude reaction mixture. The resulting InAs@ZnSe core@shell NCs exhibit photoluminescence emission at ∼860 nm with a quantum yield as high as 42±4%, which is a record for such heterostructures, given the relatively high mismatch (6%) between InAs and ZnSe. Such bright emission was ascribed to the formation, under our peculiar reaction conditions, of an In-Zn-Se intermediate layer between the core and the shell, as indicated by X-ray photoelectron spectroscopy and elemental analyses, which helps to release the strain between the two materials.

7.
ACS Energy Lett ; 7(5): 1850-1858, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35601630

ABSTRACT

Simultaneously achieving both broad absorption and sharp emission in the near-infrared (NIR) is challenging. Coupling of an efficient absorber such as lead halide perovskites to lanthanide emissive species is a promising way to meet the demands for visible-to-NIR spectral conversion. However, lead-based perovskite sensitizers suffer from relatively narrow absorption in the visible range, poor stability, and toxicity. Herein, we introduce a downshifting configuration based on lead-free cesium manganese bromide nanocrystals acting as broad visible absorbers coupled to sharp emission in the NIR-I and NIR-II spectral regions. To achieve this, we synthesized CsMnBr3 and Cs3MnBr5 nanocrystals and attempted to dope them with a series of lanthanides, achieving success only with CsMnBr3. The correlation of the lanthanide emission to the CsMnBr3 visible absorption was confirmed with steady-state excitation spectra and time-resolved photoluminescence measurements, whereas the mechanism of downconversion from the CsMnBr3 matrix to the lanthanides was understood by density functional theory calculations. This study shows that lead-free metal halides with an appropriate phase are effective sensitizers for lanthanides and offer a route to efficient downshifting applications.

8.
Front Neurosci ; 15: 652608, 2021.
Article in English | MEDLINE | ID: mdl-34248476

ABSTRACT

Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.

9.
ACS Appl Mater Interfaces ; 13(27): 32022-32030, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34196177

ABSTRACT

It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based type-II QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of ∼91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle X-ray scattering shows that spherical InP core and InP/ZnO core/shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.

10.
ACS Appl Mater Interfaces ; 12(32): 35940-35949, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32667186

ABSTRACT

Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.e., optocapacitance). Instead, here, we demonstrate that plasmonic coupling to photocapacitor biointerfaces improves safe and efficacious neuromodulating displacement charges for an average of 185% in the entire visible spectrum while maintaining the faradic currents below 1%. Hot-electron injection dominantly leads the enhancement of displacement current in the blue spectral window, and the nanoantenna effect is mainly responsible for the improvement in the red spectral region. The plasmonic photocapacitor facilitates wireless modulation of single cells at three orders of magnitude below the maximum retinal intensity levels, corresponding to one of the most sensitive optoelectronic neural interfaces. This study introduces a new way of using plasmonics for safe and effective photostimulation of neurons and paves the way toward ultrasensitive plasmon-assisted neurostimulation devices.


Subject(s)
Coated Materials, Biocompatible/chemistry , Nanostructures/chemistry , Neurotransmitter Agents/chemistry , Computer Simulation , Electrochemical Techniques , Electrons , Gold/chemistry , Humans , Light , Neurons/metabolism , Photochemical Processes , Scattering, Radiation , Single-Cell Analysis , Surface Plasmon Resonance , Surface Properties
11.
iScience ; 23(7): 101272, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32590328

ABSTRACT

Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells. The optimized QD-LSCs showed an optical quantum efficiency of 37% and an internal concentration factor of 4.7 for a 10 × 10-cm2 device area under solar illumination, which is comparable with the state-of-the-art LSCs based on cadmium-containing QDs and lead-containing perovskites. Synthesis of the copper-doped InP/ZnSe QDs in gram-scale and large-area deposition (3,000 cm2) onto commercial window glasses via doctor-blade technique showed their scalability for mass production. These results position InP-based QDs as a promising alternative for efficient solar energy harvesting.

12.
Nano Lett ; 19(9): 5975-5981, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31398051

ABSTRACT

Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers. Inspired by these systems, neural interfaces based on biocompatible quantum funnels are developed that direct the photogenerated charge carriers toward the bionanojunction for effective photostimulation. Funnels are constructed with indium-based rainbow quantum dots that are assembled in a graded energy profile. Implementation of a quantum funnel enhances the generated photoelectrochemical current 215% per unit absorbance in comparison with ungraded energy profile in a wireless and free-standing mode and facilitates optical neuromodulation of a single cell. This study indicates that the control of charge transport at nanoscale can lead to unconventional and effective neural interfaces.


Subject(s)
Biocompatible Materials/pharmacology , Energy Transfer , Nervous System Diseases/therapy , Quantum Dots/chemistry , Biocompatible Materials/chemistry , Humans , Indium/chemistry , Models, Chemical , Photic Stimulation , Quantum Dots/therapeutic use , Single-Cell Analysis
13.
ACS Appl Mater Interfaces ; 11(9): 8710-8716, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30777750

ABSTRACT

In recent years, luminescent solar concentrators (LSCs) have received renewed attention as a versatile platform for large-area, high-efficiency, and low-cost solar energy harvesting. So far, artificial or engineered optical materials, such as rare-earth ions, organic dyes, and colloidal quantum dots (QDs) have been incorporated into LSCs. Incorporation of nontoxic materials into efficient device architectures is critical for environmental sustainability and clean energy production. Here, we demonstrated LSCs based on fluorescent proteins, which are biologically produced, ecofriendly, and edible luminescent biomaterials along with exceptional optical properties. We synthesized mScarlet fluorescent proteins in Escherichia coli expression system, which is the brightest protein with a quantum yield of 61% in red spectral region that matches well with the spectral response of silicon solar cells. Moreover, we integrated fluorescent proteins in an aqueous medium into solar concentrators, which preserved their quantum efficiency in LSCs and separated luminescence and wave-guiding regions due to refractive index contrast for efficient energy harvesting. Solar concentrators based on mScarlet fluorescent proteins achieved an external LSC efficiency of 2.58%, and the integration at high concentrations increased their efficiency approaching to 5%, which may facilitate their use as "luminescent solar curtains" for in-house applications. The liquid-state integration of proteins paves a way toward efficient and "green" solar energy harvesting.


Subject(s)
Luminescent Proteins/chemistry , Solar Energy , Coloring Agents/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Quantum Dots/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Silicon/chemistry , Ultraviolet Rays
14.
J Phys Chem C Nanomater Interfaces ; 122(22): 11616-11622, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-30057655

ABSTRACT

Interparticle energy transfer offers great promise to a diverse range of applications ranging from artificial solar energy harvesting to nanoscale rulers in biology. Here, we assembled InP/ZnS core/shell quantum dot monolayers via the Langmuir-Blodgett technique and studied the effect of ZnS shell thickness on the excitonic energy transfer within these core/shell quantum dots. Three types of InP-based core/shell quantum dot Langmuir-Blodgett assemblies with different ZnS shell thicknesses were assembled. The structural and optical properties of colloidal quantum dots reveal the successful multiple ZnS shell growth, and atomic force microscopy studies show the smoothness of the assembled monolayers. Time-resolved photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) studies of the thick-shell QD monolayer reveal narrower lifetime distribution in comparison with the thin-shell QD monolayer. The interparticle excitonic energy transfer was studied by spectrally resolved PL traces, and higher energy transfer was observed for the thin-shell InP/1ZnS QD monolayer. Finally, we calculated the average exciton energy and indicated that the energy transfer induced exciton energy shift decreased significantly from 95 to 27 meV after multiple ZnS shell growth.

15.
ACS Nano ; 12(8): 8104-8114, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30020770

ABSTRACT

Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 µW mm-2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.


Subject(s)
Indium/chemistry , Neurons/chemistry , Phosphines/chemistry , Quantum Dots/chemistry , Animals , Cell Proliferation , Cell Survival , Electrodes , Mice , Microscopy, Fluorescence , PC12 Cells , Particle Size , Photochemical Processes , Rats , Surface Properties , Zinc Oxide/chemistry
16.
ACS Appl Mater Interfaces ; 10(15): 12975-12982, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29589740

ABSTRACT

Luminescent solar concentrators (LSCs) show promise because of their potential for low-cost, large-area, and high-efficiency energy harvesting. Stokes shift engineering of luminescent quantum dots (QDs) is a favorable approach to suppress reabsorption losses in LSCs; however, the use of highly toxic heavy metals in QDs constitutes a serious concern for environmental sustainability. Here, we report LSCs based on cadmium-free InP/ZnO core/shell QDs with type-II band alignment that allow for the suppression of reabsorption by Stokes shift engineering. The spectral emission and absorption overlap was controlled by the growth of a ZnO shell on an InP core. At the same time, the ZnO layer also facilitates the photostability of the QDs within the host matrix. We analyzed the optical performance of indium-based LSCs and identified the optical efficiency as 1.45%. The transparency, flexibility, and cadmium-free content of the LSCs hold promise for solar window applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...