Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Talanta ; 277: 126340, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38870756

ABSTRACT

Understanding the contribution of new natural sources of antioxidant compounds to the stability of wines is of great interest in a context of reduction of sulfites. Here, we investigated the antioxidant potential of selected inactivated non-Saccharomyces yeast (INSY) along with related chemical fingerprints, using combined untargeted UHPLC-Q-ToF MS and DPPH analyses. 4 INSY species were compared to a reference inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity. Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170 % to +360 % compared to the corresponding classical production process. The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF-MS clearly grouped INSY by species, independently of the production process. One INSY exhibited equivalent antioxidant capacity to the control ISY, but with a GSH concentration four times lower (4.73 ± 0.09 mg/g against 20.95 ± 0.34 mg/g, respectively). 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds. These results point out that, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fractions and other more reactive compounds must be considered, which opens an avenue for the selection new species with great enological potential.


Subject(s)
Antioxidants , Metabolome , Saccharomyces cerevisiae , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Chromatography, High Pressure Liquid , Biphenyl Compounds/chemistry , Picrates/antagonists & inhibitors , Glutathione/metabolism , Glutathione/analysis
2.
Food Chem ; 441: 138391, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38218153

ABSTRACT

Inoculation modes are known to affect yeast behavior. Here, we characterized the impact of ADY and pre-culturing on the composition of the resulting wine, fermented by four commercial strains of Saccharomyces cerevisiae. Classical oenological parameters were not affected by the yeast inoculation mode. Using an untargeted metabolomic approach, a significant distinction in wine composition was noted regardless of the strain between the two inoculation modes, each associated with a specific metabolomic signature. 218 and 895 biomarkers were annotated, respectively, for ADYs associated with the preservation of wine polyphenols, and for pre-cultures related to the modulation of yeast nitrogen metabolism. Volatilome analysis revealed that the ester family was that most impacted by the inoculation mode whatever the strain. Ester production was enhanced in ADY condition. For the first time, the complete reprogramming of the yeast metabolism was revealed as a function of yeast preparation, which significantly impacts its volatilome and exometabolome.


Subject(s)
Wine , Yeast, Dried , Saccharomyces cerevisiae/metabolism , Wine/analysis , Biomarkers/metabolism , Esters/metabolism , Fermentation
3.
Foods ; 13(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38201082

ABSTRACT

The composition of the juice from grape berries is at the basis of the definition of technological ripeness before harvest, historically evaluated from global sugar and acid contents. If many studies have contributed to the identification of other primary and secondary metabolites in whole berries, deepening knowledge about the chemical composition of the sole flesh of grape berries (i.e., without considering skins and seeds) at harvest is of primary interest when studying the enological potential of widespread grape varieties producing high-added-value wines. Here, we used non-targeted DI-FT-ICR-MS and RP-UHPLC-Q-ToF-MS analyses to explore the extent of metabolite coverage of up to 290 grape juices from four Vitis vinifera grape varieties, namely Chardonnay, Pinot noir, Meunier, and Aligoté, sampled at harvest from 91 vineyards in Europe and Argentina, over three successive vintages. SPE pretreatment of samples led to the identification of more than 4500 detected C,H,O,N,S-containing elemental compositions, likely associated with tens of thousands of distinct metabolites. We further revealed that a major part of this chemical diversity appears to be common to the different juices, as exemplified by Pinot noir and Chardonnay samples. However, it was possible to build significant models for the discrimination of Chardonnay from Pinot noir grape juices, and of Chardonnay from Aligoté grape juices, regardless of the geographical origin or the vintage. Therefore, this metabolomic approach opens access to a remarkable holistic molecular description of the instantaneous composition of such a biological matrix, which is the result of complex interplays among environmental, biochemical, and vine growing practices.

4.
Front Microbiol ; 13: 1032842, 2022.
Article in English | MEDLINE | ID: mdl-36845971

ABSTRACT

Yeast co-inoculations in winemaking are often studied in the framework of modulating the aromatic profiles of wines. Our study aimed to investigate the impact of three cocultures and corresponding pure cultures of Saccharomyces cerevisiae on the chemical composition and the sensory profile of Chardonnay wine. Coculture makes it possible to obtain completely new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. Esters, fatty acids and phenol families were identified as affected. The sensory profiles and metabolome of the cocultures, corresponding pure cultures and associated wine blends from both pure cultures were found to be different. The coculture did not turn out to be the addition of the two pure culture wines, indicating the impact of interaction. High resolution mass spectrometry revealed thousands of cocultures biomarkers. The metabolic pathways involved in these wine composition changes were highlighted, most of them belonging to nitrogen metabolism.

5.
Food Chem ; 355: 129566, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33799250

ABSTRACT

The chemical composition and functionality of molecular fractions associated with dry white wines oxidative stability remain poorly understood. In the present study, DPPH assay, electron paramagnetic resonance spectroscopy (EPR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) were used to explore the chemical diversity associated with the antioxidant capacity (AC) of white wines. AC determined using the DPPH assay and EPR were complementary and enabled differentiation of wine samples into groups with low, medium, and high AC. Mass spectra variations associated with global DPPH- and EPR-derived indices enabled identification of 365 molecular markers correlated with samples with high AC, of which 32% were CHO compounds including phenolic and sugar derivatives, 20% were CHOS and 36% were CHONS compounds including cysteine-containing peptides. This study confirmed the importance of CHONS and CHOS compounds in the antioxidant metabolome of dry white wines. Knowledge about these compounds will enable better understanding of the oxidative stability of white wines and therefore aid in achieving optimum shelf life.


Subject(s)
Antioxidants/chemistry , Electron Spin Resonance Spectroscopy , Mass Spectrometry/methods , Wine/analysis , Cluster Analysis , Discriminant Analysis , Phenols/chemistry , Principal Component Analysis , Sugars/chemistry
6.
Food Chem ; 325: 126941, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32387931

ABSTRACT

Maintaining wine oxidative stability during barrel ageing and shelf life storage remains a challenge. This study evaluated the antioxidant activities of soluble extracts from seven enological yeast derivatives (YDs) with increased glutathione (GSH) enrichment. YDs enriched in GSH appeared on average 3.3 times more efficient at quenching radical species than YDs not enriched in GSH. The lack of correlation (Spearman correlation ρ = 0.46) between the GSH concentration released from YDs and their radical scavenging activity shed light on other non-GSH compounds present. After 4-methyl-1,2-benzoquinone derivatization, UHPLC-Q-ToF MS analyses specifically identified 52 nucleophiles potentially representing an extensive molecular nucleophilic fingerprint of YDs. The comparative analysis of YD chemical oxidation conditions revealed that the nucleophilic molecular fingerprint of the YD was strongly correlated to its antiradical activity. The proposed strategy shows that nucleophiles co-accumulated with GSH during the enrichment of YDs are responsible for their antioxidant activities.

7.
Antioxidants (Basel) ; 9(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012937

ABSTRACT

The knowledge about the molecular fraction contributing to white wines oxidative stability is still poorly understood. However, the role of S- and N-containing compounds, like glutathione and other peptides, as a source of reductant in many oxidation reactions, and acting against heavy metals toxicity, or lipid and polyphenol oxidation as ROS-scavenger is today very well established. In that respect, the aim of the present study is to introduce an original analytical tool for the direct determination of the available nucleophilic compounds in white wine under acidic pH conditions. One step derivatization of nucleophiles has been realized directly in wines using 4-methyl-1,2-benzoquinone (4MeQ) as an electrophilic probe. Derivatization conditions considering probe concentration, pH, reaction time, MS ionisation conditions and adducts stability, were optimized using model solutions containing standard sulfur and amino compounds (GSH, Cys, HCys and Ser-Aps-Cys-Asp-Ser, Asp-Met, Met and Glu). Ultra-high-performance liquid chromatography coupled to a quadrupole-time of flight mass spectrometer (UHPLC-QqTOF-MS) analysis of up to 92 white wines from different cultivars (Chardonnay, Sauvignon and Semillon) followed by Multivariate analysis (PLS DA) and Wilcoxon test allowed to isolate up to 141 putative wine relevant nucleophiles. Only 20 of these compounds, essentially thiols, were detectable in samples before derivatization, indicating the importance of the quinone trapping on the revelation of wine unknown nucleophiles. Moreover, annotation using online database (Oligonet, Metlin and KEGG) as well as elementary formula determined by isotopic profile, provided evidence of the presence of amino acids (Val, Leu, Ile, Pro, Trp, Cys and Met) and peptides with important antioxidant properties. The complimentary set of MS/MS spectral data greatly accelerated identification of nucleophiles and enabled peptides sequencing. These results show that probing wines with 4-methyl-1,2-benzoquinone enhances thiols ionisation capacity and gives a better screening of specific S- N- containing functional compounds as part of the white wines antioxidant metabolome.

8.
Food Res Int ; 123: 762-770, 2019 09.
Article in English | MEDLINE | ID: mdl-31285026

ABSTRACT

Glutathione-rich inactivated dry yeasts (GSH-IDY) are purported to accumulate glutathione intracellularly and then released into the must. Glutathione is beneficial for wine quality, but research has highlighted that GSH-IDYs have a synergic antioxidant effect similar to that of molecular GSH. Combination of negative mode ultra-high-resolution Fourrier-Transform Ion-Cyclotron-Resonance Mass Spectrometry ((-)FT-ICR-MS), ultra-high-performance liquid chromatography coupled to a Quadrupole-Time of Flight mass spectrometer (UHPLC-Q-ToF-MS) and HPLC/Diode Detector Array (DAD)-Fluorescence spectroscopy was applied to three inactivated dry yeasts soluble fractions, with increasing intracellular glutathione concentration, in order to explore the chemical diversity released in different synthetic media. Using the mean of size exclusion chromatography/DAD and fluorescence detection we report than most of the signals detected were below the 5-75 kDa-calibrated region of the chromatogram, indicating that most of the soluble protein fraction is composed of low molecular weight soluble peptides. In light of these results, high-resolution mass spectrometry was used to scan and annotate the low molecular weight compounds from 50 to 1500 Da and showed that GSH level of enrichment in IDYs was correlated to a discriminant chemical diversity of the corresponding soluble fractions. Our results clearly show an impact of the GSH accumulation process not only visible on the glutathione itself, but also on the global diversity of compounds. Within the 1674 ions detected by (-)FT-ICR-MS, the ratio of annotated elemental formulas containing carbon, hydrogen, oxygen, nitrogen and sulfur (CHONS) to annotated elemental formulas containing carbon, hydrogen, oxygen (CHO) increased from 0.2 to 2.1 with the increasing levels of IDYs GSH content and 36 unique CHONS annotated formulas were unique to the IDY with the highest concentration of GSH. Amongst the 1674 detected ions 193 were annotated as potential peptides (from 2 to 5 residues), 61 ions were annotated as unique amino acid combinations and 46% of which being significantly more intense in GSH-rich IDY. Thus, the process leading to the accumulation of glutathione also involves other metabolic pathways which contribute to an increase in CHONS containing compounds potentially released in wine, notably peptides.


Subject(s)
Glutathione/analysis , Metabolomics , Yeast, Dried/metabolism , Amino Acids/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Fermentation , Molecular Weight , Peptides/analysis , Wine/analysis
9.
Molecules ; 24(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959818

ABSTRACT

The DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay is an easy and efficient method commonly used to determine the antioxidant capacity of many food matrices and beverages. In contrast with red wines, white wines are poorer in antioxidant polyphenolics, and the more hydrophilic sulfur-containing compounds in them may contribute significantly to their antioxidant capacity. The modification of the classical DPPH method, with a methanol-buffer and the measure of EC20 (quantity of sample needed to decrease the initial DPPH concentration by 20%) has shown that sulfur-containing compounds such as cysteine (0.037 ± 0.003), glutathione (0.054 ± 0.003) or methanethiol (0.104 ± 0.003) appeared to bear antioxidant capacity comparable to well known phenolic compounds, such as catechin (0.035 ± 0.003), caffeic acid (0.057 ± 0.003) and ferulic acid (0.108 ± 0.003), respectively. In the case of white wines, the comparison with REDOX-sensory scores showed that results from this modified DPPH assay are strongly correlated with sensory attributes (r = 0.73, p < 0.1). These results provide an unprecedented illustration of the important contribution of these sulfur-containing compounds to the radical quenching ability of white wines.


Subject(s)
Antioxidants/chemistry , Biphenyl Compounds/chemistry , High-Throughput Screening Assays/methods , Picrates/chemistry , Wine/analysis , Caffeic Acids/chemistry , Catechin/chemistry , Coumaric Acids/chemistry , Humans , Phenols/chemistry , Sulfur Compounds/chemistry
10.
Sci Rep ; 7(1): 11692, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916823

ABSTRACT

Bioactive peptides play critical roles in regulating many biological processes. Recently, natural short peptides biomarkers are drawing significant attention and are considered as "hidden treasure" of drug candidates. High resolution and high mass accuracy provided by mass spectrometry (MS)-based untargeted metabolomics would enable the rapid detection and wide coverage of the low-molecular-weight peptidome. However, translating unknown masses (<1 500 Da) into putative peptides is often limited due to the lack of automatic data processing tools and to the limit of peptide databases. The web server OligoNet responds to this challenge by attempting to decompose each individual mass into a combination of amino acids out of metabolomics datasets. It provides an additional network-based data interpretation named "Peptide degradation network" (PDN), which unravels interesting relations between annotated peptides and generates potential functional patterns. The ab initio PDN built from yeast metabolic profiling data shows a great similarity with well-known metabolic networks, and could aid biological interpretation. OligoNet allows also an easy evaluation and interpretation of annotated peptides in systems biology, and is freely accessible at https://daniellyz200608105.shinyapps.io/OligoNet/ .


Subject(s)
Biological Factors/analysis , Computational Biology/methods , Metabolomics/methods , Peptides/analysis , Biological Factors/genetics , Internet , Peptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL