Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cureus ; 16(2): e54809, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38529437

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem all over the world. After the 2019 coronavirus illness (COVID-19), the pandemic may have influenced research priorities and resource allocation, potentially affecting the ability to monitor MRSA trends. AIMS: The study aimed to evaluate the prevalence of S. aureus, including MRSA infections, and their antimicrobial susceptibilities over the years 2019 and 2020 in a tertiary hospital in Makkah City, KSA. METHODOLOGY: A total of 2128 and 1515 laboratory (lab) samples were collected during the years 2019 and 2020, respectively. From these samples, the prevalence of S. aureus, including MRSA, and their antibiotic susceptibility were identified using standard, automated, and molecular microbiological methods. RESULTS: The present study shows that the lab prevalence of all S. aureus during 2019 was found to be 35.5%, of which MRSA was 44.8%. During 2020, the frequency of S. aureus strains was 16%, of which MRSA was 41.2%. The most common MRSA isolated during both years were colonizing pus swabs and urine samples. The results showed that MRSA susceptibility against antimicrobial agents in 2019 was as follows: vancomycin (100%), linezolid (100%), trimethoprim-sulfamethoxazole (88%), and doxycycline (34.2%). The MRSA strains isolated during 2020 were as follows: vancomycin (100%), linezolid (96%), trimethoprim-sulfamethoxazole (100%), and doxycycline (24.3%). There was no significant difference in the incidence and antimicrobial resistance rates of MRSA over the two years. CONCLUSION: It was concluded that the prevalence rates of MRSA have not increased in 2020 when compared to 2019. Vancomycin, linezolid, trimethoprim-sulfamethoxazole, and doxycycline remain susceptible to the positive collected MRSA strains. There was no significant difference between the prevalence and antimicrobial resistance rates of MRSA between 2019 and 2020. Continued research efforts are needed to address this persistent public health threat. Strategies to control the spread of MRSA should include early detection of MRSA and surveillance, even during pandemics.

2.
PLoS One ; 18(7): e0289359, 2023.
Article in English | MEDLINE | ID: mdl-37506109

ABSTRACT

Since the peak of the coronavirus disease 2019 (COVID-19) pandemic, concerns around multidrug-resistant (MDR) bacterial pathogens have increased. This study aimed to characterize aminoglycoside resistance genes in MDR Klebsiella pneumoniae (K. pneumoniae) collected during the COVID-19 pandemic. A total of 220 clinical isolates of gram-negative bacteria were collected from tertiary hospitals in Makkah, Saudi Arabia, between April 2020 and January 2021. The prevalence of K. pneumoniae was 40.5%; of the 89 K. pneumoniae isolates, MDR patterns were found among 51 (57.3%) strains. The MDR isolates showed elevated resistance rates to aminoglycoside agents, including amikacin (100%), gentamicin (98%), and tobramycin (98%). PCR assays detected one or more aminoglycoside genes in 42 (82.3%) MDR K. pneumoniae strains. The rmtD gene was the most predominant gene (66.7%; 34/51), followed by aac(6')-Ib and aph(3')-Ia (45.1%; 23/51). The aac(3)-II gene was the least frequent gene (7.8%; 4/51) produced by our isolates. The rmtC gene was not detected in the studied isolates. Our findings indicated a high risk of MDR bacterial infections through the COVID-19 outbreak. Therefore, there is a need for continuous implementation of effective infection prevention control (IPC) measures to monitor the occurrence of MDR pathogens and the emergence of MDR bacterial infections through the COVID-19 outbreak.


Subject(s)
Bacterial Infections , COVID-19 , Klebsiella Infections , Humans , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Klebsiella pneumoniae , Pandemics , Tertiary Care Centers , Drug Resistance, Bacterial/genetics , COVID-19/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Protein Synthesis Inhibitors/pharmacology , Bacterial Infections/epidemiology , Microbial Sensitivity Tests , beta-Lactamases/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology
3.
Antibiotics (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421271

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is involved in several hospital and community-acquired infections. The prevalence of K. pneumoniae-producing-carbapenemase (KPC) resistance genes rapidly increases and threatens public health worldwide. This study aimed to assess the antibiotic resistance level of K. pneumoniae isolates from Makkah Province, Saudi Arabia, during the Islamic 'Umrah' ritual and to identify the plasmid types, presence of genes associated with carbapenem hydrolyzing enzymes, and virulence factors. The phenotypic and genotypic analyses based on the minimum inhibitory concentration (MIC), biofilm formation, PCR, and characterization of KPC-encoding plasmids based on the replicon typing technique (PBRT) were explored. The results showed that most isolates were resistant to carbapenem antibiotics and other antibiotics classes. This study identified sixteen different replicons of plasmids in the isolates and multiple genes encoding carbapenem factors, with blaVIM and blaOXA-48 being the most prevalent genes identified in the isolates. However, none of the isolates exhibited positivity for the KPC production activity. In addition, this study also identified six virulence-related genes, including kfu, wabG, uge, rmpA, fimH, and a capsular polysaccharide (CPS). Together, the data reported in this study indicate that the isolated K. pneumoniae during the pilgrimage in Makkah were all resistant to carbapenem antibiotics. Although the isolates lacked KPC production activity, they carried multiple carbapenem-resistant genes and virulence factors, which could drive their resistant phenotype. The need for specialized methods for KPC detection, monitoring the possibility of nosocomial transmission, and diverse therapeutic alternatives are necessary for controlling the spreading of KPC. This study can serve as a reference for clinicians and researchers on types of K. pneumoniae commonly found during religious gathering seasons in Saudi Arabia.

4.
Medicine (Baltimore) ; 100(52): e28334, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34967364

ABSTRACT

ABSTRACT: In the wake of the COVID-19 pandemic, research indicates that the COVID-19 disease susceptibility varies among individuals depending on their ABO blood groups. Researchers globally commenced investigating potential methods to stratify cases according to prognosis depending on several clinical parameters. Since there is evidence of a link between ABO blood groups and disease susceptibility, it could be argued that there is a link between blood groups and disease manifestation and progression. The current study investigates whether clinical manifestation, laboratory, and imaging findings vary among ABO blood groups of hospitalized confirmed COVID-19 patients.This retrospective cohort study was conducted between March 1, 2020 and March 31, 2021 in King Faisal Specialist Hospital and Research Centre Riyadh and Jeddah, Saudi Arabia. Demographic information, clinical information, laboratory findings, and imaging investigations were extracted from the data warehouse for all confirmed COVID-19 patients.A total of 285 admitted patients were included in the study. Of these, 81 (28.4%) were blood group A, 43 (15.1%) were blood group B, 11 (3.9%) were blood group AB, and 150 (52.6%) were blood group O. This was almost consistent with the distribution of blood groups among the Saudi Arabia community. The majority of the study participants (79.6% [n = 227]) were asymptomatic. The upper respiratory tract infection (P = .014) and shortness of breath showed statistically significant differences between the ABO blood group (P = .009). Moreover, the incidence of the symptoms was highly observed in blood group O followed by A then B except for pharyngeal exudate observed in blood group A. The one-way ANOVA test indicated that among the studied hematological parameters, glucose (P = .004), absolute lymphocyte count (P = .001), and IgA (P = .036) showed statistically significant differences between the means of the ABO blood group. The differences in both X-ray and computed tomography scan findings were statistically nonsignificant among the ABO age group. Only 86 (30.3%) patients were admitted to an intensive care unit, and the majority of them were blood groups O 28.7% (n = 43) and A 37.0% (n = 30). However, the differences in complications' outcomes were statistically nonsignificant among the ABO age group.ABO blood groups among hospitalized COVID-19 patients are not associated with clinical, hematological, radiological, and complications abnormality.


Subject(s)
ABO Blood-Group System , COVID-19/blood , Disease Susceptibility , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Dyspnea/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Respiratory Tract Infections/epidemiology , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Severity of Illness Index , Young Adult
5.
Mater Today Proc ; 2021 May 21.
Article in English | MEDLINE | ID: mdl-34075332

ABSTRACT

The emergence of multidrug resistance to aminoglycosides in K. pneumoniae isolates is a growing concern, especially during pandemic Coronavirus disease 2019 (COVID-19). The study identifies antibiotic resistance in K. pneumoniae isolated from tertiary hospitals during pandemic COVID-19. Among 220 clinical isolates, the total rate of K. pneumoniae was found to be 89 (40.5%). Phenotyping results confirmed the resistance of aminoglycoside antibiotics in 51 (23.2%) of K. pneumoniae isolates. PCR results confirmed the existence of one or more aminoglycoside genes in 82.3% of the 51 isolates. The rmtD gene was the highest-detected gene (66.7%), followed by aac(6')-Ib (45.1%), aph(3')-Ia (45.1%), rmtB (29.4%), armA (21.6%), aac(3)-II (7.8%), and rmtA (3) (11.8%). Significantly, higher resistance strains showed a higher prevalence (61.5%) of aminoglycoside genes (p < 0.05). During COVID-19, there is a higher risk of acquiring MDR bacterial infections, so the monitoring of multidrug resistant bacteria must be continuously undertaken to implement effective measures in infection control and prevention.

6.
Ethiop J Health Sci ; 31(6): 1231-1240, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35392341

ABSTRACT

Background: The rate of infections in the intensive care units (ICUs) is rising, mainly because of the increasing use of invasive procedures and specialized devices. This study aimed to identify the antibiotic resistance profile of common bacteria isolated from lower respiratory tract infections (LRTIs), bloodstream infections (BSIs), and urinary infections (UTIs) in ICUs in Saudi Arabia. Methods: In the current retrospective study, the isolates and antibiotic resistance were collected from the Electronic Medical Record (EMR) for respiratory, blood, and urine samples. The study sample compromised 96 patients admitted to the ICU at least for 48 hours and have a central venous catheter (CVC) between November 1, 2020, and January 31, 2021. Results: 66 (68.8%) of the study sample were males, and 30 (31.2%) were females. LRTIs were the most common isolates (51 samples), followed by BSIs (28 samples) and UTIs (17 samples). The isolated pathogens in this study were Klebsiella pneumoniae (K. pneumoniae) (59.4%), Coagulase-negative staphylococci (CoNS) (11.5%), Escherichia coli (E. coli) (8.4%), Acinetobacter baumannii (A. baumannii) (7.3%), and Staphylococcus aureus (S. aureus) (6.2%). BSI were frequently caused by CoNS (35.7%) and K. pneumoniae (35.7%), while Methicillin-resistant Staphylococcus aureus (MRSA) represented 10.7% of BSI. Vancomycin, Synercid, and Teicoplanin were the commonly used antibiotics and showed 100% sensitivity among S. aureus, including MRSA, while almost 100% resistance was observed for penicillin and oxacillin against the same organisms. The maximum resistance was observed with aztreonam (96.4%), ampicillin (87.3%), followed by co-amoxiclav (83.9%), cotrimoxazole (79.5%) and cephalosporin group antibiotics. Conclusions: Strict adherence to infection prevention practices and wise use of antibiotics are recommended to slow the spread of antimicrobial resistance (AMR).


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Urinary Tract Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Drug Resistance, Bacterial , Escherichia coli , Female , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Retrospective Studies , Saudi Arabia , Staphylococcus aureus , Urinary Tract Infections/drug therapy
7.
Ann Clin Microbiol Antimicrob ; 16(1): 1, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28061852

ABSTRACT

BACKGROUND: The infection and prevalence of extended-spectrum ß-lactamases (ESBLs) is a worldwide problem, and the presence of ESBLs varies between countries. In this study, we investigated the occurrence of plasmid-mediated ESBL/AmpC/carbapenemase/aminoglycoside resistance gene expression in Escherichia coli using phenotypic and genotypic techniques. METHODS: A total of 58 E. coli isolates were collected from hospitals in the city of Makkah and screened for the production of ESBL/AmpC/carbapenemase/aminoglycoside resistance genes. All samples were subjected to phenotypic and genotypic analyses. The antibiotic susceptibility of the E. coli isolates was determined using the Vitek-2 system and the minimum inhibitory concentration (MIC) assay. Antimicrobial agents tested using the Vitek 2 system and MIC assay included the expanded-spectrum (or third-generation) cephalosporins (e.g., cefoxitin, cefepime, aztreonam, cefotaxime, ceftriaxone, and ceftazidime) and carbapenems (meropenem and imipenem). Reported positive isolates were investigated using genotyping technology (oligonucleotide microarray-based assay and PCR). The genotyping investigation was focused on ESBL variants and the AmpC, carbapenemase and aminoglycoside resistance genes. E. coli was phylogenetically grouped, and the clonality of the isolates was studied using multilocus sequence typing (MLST). RESULTS: Our E. coli isolates exhibited different levels of resistance to ESBL drugs, including ampicillin (96.61%), cefoxitin (15.25%), ciprofloxacin (79.66%), cefepime (75.58%), aztreonam (89.83%), cefotaxime (76.27%), ceftazidime (81.36%), meropenem (0%) and imipenem (0%). Furthermore, the distribution of ESBL-producing E. coli was consistent with the data obtained using an oligonucleotide microarray-based assay and PCR genotyping against genes associated with ß-lactam resistance. ST131 was the dominant sequence type lineage of the isolates and was the most uropathogenic E. coli lineage. The E. coli isolates also carried aminoglycoside resistance genes. CONCLUSIONS: The evolution and prevalence of ESBL-producing E. coli may be rapidly accelerating in Saudi Arabia due to the high visitation seasons (especially to the city of Makkah). The health authority in Saudi Arabia should monitor the level of drug resistance in all general hospitals to reduce the increasing trend of microbial drug resistance and the impact on patient therapy.


Subject(s)
Aminoglycosides/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Urinary Tract Infections/microbiology , beta-Lactamases/metabolism , Escherichia coli/classification , Escherichia coli/enzymology , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Genotype , Humans , Microbial Sensitivity Tests , Phylogeny , Saudi Arabia , beta-Lactamases/genetics
8.
Ann Clin Microbiol Antimicrob ; 14: 38, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26290183

ABSTRACT

BACKGROUND: Acinetobacter baumannii is a common opportunistic pathogen that causes major nosocomial infections in hospitals. In this study, we hypothesized a high prevalence of A. baumanni ESBL (extended-spectrum beta-lactamase) among all collected isolates. METHODS: A. baumannii isolates (n = 107) from ICU (Intensive care unit) of local hospitals in Makkah were phenotypically and genotypically characterized. The identity and antibiotic susceptibility of A. baumannii strains were determined using the Vitek-2 system. The identified ESBL producers were further analyzed by PCR and sequencing followed by MLST typing. bla TEM , bla SHV , and the bla CTX-M-group genes 1, 2, 8, 9, and 25 were investigated. Furthermore, bla OXA51-like and bla OXA23-like genes were also examined in the carbapenem-resistant A. baumannii isolates. RESULTS: Our data indicated a high prevalence of A. baumannii ESBL producers among the collected strains. Of the 107 A. baumannii isolates, 94 % were found to be resistant to cefepime and ceftazidime, and aztreonam using the Vitek 2 system. The genes detected encoded TEM, OXA-51-like and OXA-23-like enzymes, and CTX-M-group proteins 1, 2, 8, 9, and 25. MLST typing identified eight sequence type (ST) groups. The most dominant STs were ST195 and ST557 and all of them belong to worldwide clonal complex (CC) 2. CONCLUSIONS: This study has shown that there is a high prevalence of antimicrobial resistance in A. baumannii. The diversity of STs may suggest that new ESBL strains are constantly emerging. The molecular diversity of the ESBL genes in A. baumannii may have contributed to the increased antimicrobial resistance among all isolates.


Subject(s)
Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , beta-Lactamases/genetics , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Genetic Variation , Hospitals , Humans , Intensive Care Units , Microbial Sensitivity Tests , Multilocus Sequence Typing , Prevalence , Saudi Arabia/epidemiology , Sequence Analysis, DNA , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...