Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 309: 122584, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38735180

ABSTRACT

Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.

2.
ACS Nano ; 18(4): 3349-3361, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230639

ABSTRACT

Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Mice , Nanovaccines , Neoplasms/pathology , Antigens/chemistry , Polymers , Immunotherapy , Methacrylates , Dendritic Cells , Mice, Inbred C57BL , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...