Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(4): uhae044, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623075

ABSTRACT

Linalool and caryophyllene are the main monoterpene and sesquiterpene compounds in lavender; however, the genes regulating their biosynthesis still remain many unknowns. Here, we identified LaMYC7, a positive regulator of linalool and caryophyllene biosynthesis, confers plant resistance to Pseudomonas syringae. LaMYC7 was highly expressed in glandular trichomes, and LaMYC7 overexpression could significantly increase the linalool and caryophyllene contents and reduce susceptibility to P. syringae in Nicotiana. In addition, the linalool possessed antimicrobial activity against P. syringae growth and acted dose-dependently. Further analysis demonstrated that LaMYC7 directly bound to the promoter region of LaTPS76, which encodes the terpene synthase (TPS) for caryophyllene biosynthesis, and that LaTPS76 was highly expressed in glandular trichomes. Notably, the LaMYC7 promoter contained hormone and stress-responsive regulatory elements and responded to various treatments, including ultraviolet, low temperature, salt, drought, methyl jasmonate, and P. syringae infection treatments. Under these treatments, the changes in the linalool and caryophyllene contents were similar to those in LaMYC7 transcript abundance. Based on the results, LaMYC7 could respond to P. syringae infection in addition to being involved in linalool and caryophyllene biosynthesis. Thus, the MYC transcription factor gene LaMYC7 can be used in the breeding of high-yielding linalool and caryophyllene lavender varieties with pathogen resistance.

2.
J Plant Physiol ; 292: 154143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064887

ABSTRACT

The BAHD acyltransferase superfamily has a variety of biological functions, especially in catalyzing the synthesis of ester compounds and improving plant stress resistance. Linalyl acetate and lavandulyl acetate, the most important volatile esters in lavender, are generated by LaBAHDs. However, the systematic identification, expression characteristics of LaBAHD genes and their correlations with ester formation remain elusive. Here, 166 LaBAHD genes were identified from the lavender genome. Based on detailed phylogenetic analysis, the LaBAHD family genes were divided into five groups, among which the LaBAHDs involved in volatile ester biosynthesis belong to the IIIa and Va clades. Whole-genome duplications (WGDs) and tandem duplications (TDs) jointly drive the expansion of LaBAHD superfamily. The promoter regions of LaBAHDs contained a variety of stress- and hormone-related motifs, as well as binding sites with five types of transcription factors (TFs). Then, linalyl acetate- and lavandulyl acetate-regulated coexpression modules were established and some candidate TFs that may function in inducing ester formation were identified. Based on the correlation analysis between the ester contents and expression profiles of BAHD genes in different tissues, five candidate genes were screened for further examination. Drought, salt and MeJA treatments increased the accumulation of linalyl acetate and lavandulyl acetate, and induced the expression of LaBAHDs. Our results indicated that LaBAHD57, LaBAHD63, LaBAHD104, LaBAHD105 and LaBAHD119 are crucial candidate genes involved in linalyl acetate and lavandulyl acetate biosynthesis. Our findings offer a theoretical foundation for further studying the specific biological functions of LaBAHD family and improving the quality of lavender essential oil.


Subject(s)
Acetates , Lavandula , Monoterpenes , Oils, Volatile , Lavandula/genetics , Acyltransferases/genetics , Phylogeny , Esters
3.
Plants (Basel) ; 12(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38140491

ABSTRACT

Thymus is an herbaceous perennial or subshrub of the Lamiaceae family and is widely distributed worldwide. Essential oils extracted from thymus have attracted much attention, owing to their potential biological functions. Here, we evaluated the chemical compositions of eight thyme essential oils (TEOs) using gas chromatography mass spectrometry and assessed their antioxidant activity. The results showed that (1) the main components in eight TEOs were monoterpene hydrocarbons and oxygenated monoterpenes (84.26-92.84%), and the chemical compositions of the TEOs were affected by the specie factor; (2) eight TEOs could be divided into three groups (thymol-, geraniol-, and nerol acetate-types), and thymol was the main type; (3) eight TEOs had some common compounds, such as thymol and p-cymene, which were the main components in seven TEOs; (4) eight TEOs had antioxidant activity, and Thymus pulegioides, Thymus thracicus, and Thymus serpyllum EOs had stronger antioxidant activity than vitamin E (0.07-0.27 fold) at a concentration of 1 mg/mL, while Thymus quinquecostatus and Thymus longicaulis EOs had relatively weak antioxidant activity. In addition, three chemical type standards were used to evaluate potential roles in antibacterial and tumor therapy. The results showed that thymol had strong antibacterial activity against the growth of Escherichia coli and Staphylococcus aureus, and antimigratory activity for A549 cell. Overall, our results can provide a theoretical basis for further exploring the function of natural products from thyme essential oils.

4.
BMC Plant Biol ; 23(1): 477, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37807036

ABSTRACT

To deter herbivore attacks, plants employ a diverse array of volatile compounds, particularly during the early developmental stages. The highly expressed genes LaTPS7, LaTPS8, and LaCYP71D582 were identified during the budding phases of Lavandula angustifolia. In vitro studies revealed that LaTPS7 generated nine distinct compounds, including camphene, myrcene, and limonene. LaTPS8 enzymatically converted eight volatiles by utilizing geranyl diphosphate and nerolidyl diphosphate as substrates. Overexpression of plastid-localized LaTPS7 in Nicotiana benthamiana resulted in the production of limonene. Furthermore, the endoplasmic reticulum-associated enzyme LaCYP71D582 potentially converted limonene into carveol. In N. benthamiana, LaTPS8 is responsible for the synthesis of α-pinene and sylvestrene. Furthermore, leaves transfected with LaTPS7 and leaves cotransfected with LaTPS7 and LaCYP71D582 exhibited a repellent effect on aphids, with an approximate rate of 70%. In comparison, leaves with an empty vector displayed a repellent rate of approximately 20%. Conversely, tobacco leaves expressing LaTPS7 attracted ladybugs at a rate of 48.33%, while leaves coexpressing LaTPS7 and LaCYP71D582 attracted ladybugs at a slightly higher rate of 58.33%. Subsequent authentic standard tests confirmed that limonene and carveol repel Myzus persicae while attracting Harmonia axyridis. The promoter activity of LaTPS7 and LaCYP71D582 was evaluated in Arabidopsis thaliana using GUS staining, and it was observed that wounding stimulated the expression of LaTPS7. The volatile compounds produced by LaTPS7, LaTPS8, and LaCYP71D582 play a crucial role in plant defence mechanisms. In practical applications, employing biological control measures based on plant-based approaches can promote human and environmental health.


Subject(s)
Lavandula , Terpenes , Humans , Herbivory , Lavandula/genetics , Limonene
5.
J Anim Sci Biotechnol ; 14(1): 121, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667318

ABSTRACT

BACKGROUND: Rosemary extract (RE) has been reported to exert antioxidant property. However, the application of RE in late-phase laying hens on egg quality, intestinal barrier and microbiota, and oviductal function has not been systematically studied. This study was investigated to detect the potential effects of RE on performance, egg quality, serum parameters, intestinal heath, cecal microbiota and metabolism, and oviductal gene expressions in late-phase laying hens. A total of 210 65-week-old "Jing Tint 6" laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet (CON) or basal diet supplemented with chlortetracycline at 50 mg/kg (CTC) or RE at 50 mg/kg (RE50), 100 mg/kg (RE100), and 200 mg/kg (RE200). RESULTS: Our results showed that RE200 improved (P < 0.05) Haugh unit and n-6/n-3 of egg yolk, serum superoxide dismutase (SOD) compared with CON. No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC, RE50, RE100 and RE200 groups. Compared with CTC and RE50 groups, RE200 increased serum SOD activity on d 28 and 56. Compared with CON, RE supplementation decreased (P < 0.05) total cholesterol (TC) level. CTC, RE100 and RE200 decreased (P < 0.05) serum interleukin-6 (IL-6) content compared with CON. CTC and RE200 increased jejunal mRNA expression of ZO-1 and Occludin compared with CON. The biomarkers of cecal microbiota and metabolite induced by RE 200, including Firmicutes, Eisenbergiella, Paraprevotella, Papillibacter, and butyrate, were closely associated with Haugh unit, n-6/n-3, SOD, IL-6, and TC. PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes, including 3-oxoacid CoA-transferase and butyrate-acetoacetate CoA-transferase. Moreover, transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum. CONCLUSIONS: Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier, cecal microbiota and metabolism, and oviductal function. Overall, RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.

6.
Plant Biotechnol J ; 21(10): 2084-2099, 2023 10.
Article in English | MEDLINE | ID: mdl-37399213

ABSTRACT

Polyploidization and transposon elements contribute to shape plant genome diversity and secondary metabolic variation in some edible crops. However, the specific contribution of these variations to the chemo-diversity of Lamiaceae, particularly in economic shrubs, is still poorly documented. The rich essential oils (EOs) of Lavandula plants are distinguished by monoterpenoids among the main EO-producing species, L. angustifolia (LA), L. × intermedia (LX) and L. latifolia (LL). Herein, the first allele-aware chromosome-level genome was assembled using a lavandin cultivar 'Super' and its hybrid origin was verified by two complete subgenomes (LX-LA and LX-LL). Genome-wide phylogenetics confirmed that LL, like LA, underwent two lineage-specific WGDs after the γ triplication event, and their speciation occurred after the last WGD. Chloroplast phylogenetic analysis indicated LA was the maternal source of 'Super', which produced premium EO (higher linalyl/lavandulyl acetate and lower 1,8-cineole and camphor) close to LA. Gene expression, especially the monoterpenoid biosynthetic genes, showed bias to LX-LA alleles. Asymmetric transposon insertions in two decoupling 'Super' subgenomes were responsible for speciation and monoterpenoid divergence of the progenitors. Both hybrid and parental evolutionary analysis revealed that LTR (long terminal repeat) retrotransposon associated with AAT gene loss cause no linalyl/lavandulyl acetate production in LL, and multi-BDH copies retained by tandem duplication and DNA transposon resulted in higher camphor accumulation of LL. Advances in allelic variations of monoterpenoids have the potential to revolutionize future lavandin breeding and EO production.


Subject(s)
Lavandula , Oils, Volatile , Camphor/metabolism , Lavandula/genetics , Lavandula/metabolism , Phylogeny , Plant Breeding , Monoterpenes/metabolism , Oils, Volatile/metabolism
7.
BMC Plant Biol ; 23(1): 307, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291504

ABSTRACT

BACKGROUND: Lavender (genus Lavandula, family Lamiaceae) is an aromatic plant widely grown as an ornamental plant. The chemical composition of lavender is characterized by monoterpenoids, sesquiterpenoids, and other compounds, which are primarily synthesized and stored in epidermal secretory structures called glandular trichomes (GTs). Volatile organic compounds (VOCs) are responsible for the aroma characteristics of plant oil that drive consumer preference. Aroma is usually regarded as a characteristic trait for the classification of aromatic plants. Interestingly, VOCs are synthesized and stored in GTs. Lamiaceae species such as purple perilla, peppermint, basil, thyme, and oregano usually possess two types of GTs: peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). But the development process of PGTs in lavender has been reported in only a few studies to date. RESULTS: In this study, we identified and quantified the VOCs in four lavender cultivars by headspace-solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 66 VOCs were identified in these four cultivars, the most prominent of which were linalyl acetate and linalool, and flowers were the main site of accumulation of these VOCs. Here, we examined the developmental process of PGTs, including the formation of their base, body, and apex. The apex cells contained secretory cavities, which produced VOCs. Based on the reference genome sequence of the lavender cultivar 'Jingxun 2', several R2R3-MYB subfamily genes related to GT formation were identified. These results will guide the engineering of GTs and molecular breeding of lavender for improving the VOC content. CONCLUSIONS: In this study, we identified the VOCs in four lavender cultivars. We analyzed the formation of GTs, and compared the number and diameter size of PGTs among four lavender cultivars. Additionally, we identified four candidate genes belonging to the R2R3-MYB family.


Subject(s)
Lavandula , Oils, Volatile , Terpenes , Lavandula/genetics , Oils, Volatile/analysis , Trichomes/chemistry , Plant Oils/chemistry
8.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108486

ABSTRACT

Oregano is a medicinal and aromatic plant of value in the pharmaceutical, food, feed additive, and cosmetic industries. Oregano breeding is still in its infancy compared with traditional crops. In this study, we evaluated the phenotypes of 12 oregano genotypes and generated F1 progenies by hybridization. The density of leaf glandular secretory trichomes and the essential oil yield in the 12 oregano genotypes varied from 97-1017 per cm2 and 0.17-1.67%, respectively. These genotypes were divided into four terpene chemotypes: carvacrol-, thymol-, germacrene D/ß-caryophyllene-, and linalool/ß-ocimene-type. Based on phenotypic data and considering terpene chemotypes as the main breeding goal, six oregano hybrid combinations were performed. Simple sequence repeat (SSR) markers were developed based on unpublished whole-genome sequencing data of Origanum vulgare, and 64 codominant SSR primers were screened on the parents of the six oregano combinations. These codominant primers were used to determine the authenticity of 40 F1 lines, and 37 true hybrids were identified. These 37 F1 lines were divided into six terpene chemotypes: sabinene-, ß-ocimene-, γ-terpinene-, thymol-, carvacrol-, and p-cymene-type, four of which (sabinene-, ß-ocimene-, γ-terpinene-, and p-cymene-type) were novel (i.e., different from the chemotypes of parents). The terpene contents of 18 of the 37 F1 lines were higher than those of their parents. The above results lay a strong foundation for the creating of new germplasm resources, constructing of genetic linkage map, and mapping quantitative trait loci (QTLs) of key horticultural traits, and provide insights into the mechanism of terpenoid biosynthesis in oregano.


Subject(s)
Oils, Volatile , Origanum , Terpenes , Thymol , Origanum/genetics , Monoterpenes , Plant Breeding
9.
Antioxidants (Basel) ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37107264

ABSTRACT

Acer truncatum Bunge is a versatile, oil-producing, woody tree natively and widely distributed in northern China. In 2011, The People's Republic of China's Ministry of Health certified Acer truncatum seed oil (Aoil) as a new food resource. Unsaturated fatty acids account for up to 92% of the entire Aoil. When Aoil is processed or stored, it can easily oxidize. In this study, the effects of rosemary (Rosmarinus officinalis L.) extract on the oxidation stability of Aoil were analysed from multiple angles. The results of radical scavenging ability, malondialdehyde, and free fatty acid reveal that rosemary crude extract (RCE), rosmarinic acid (RA), and carnosic acid (CA) can significantly inhibit the oxidation of Aoil, and CA has the best oxidative stability for Aoil among the tested components of the crude rosemary. The delayed oxidation ability of CA for Aoil was slightly weaker than that of tert-butylhydroquinone (TBHQ), but stronger than that of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and α-tocopherol (α-T), which was confirmed by microstructures, kinematic viscosity, Aoil weight change, and functional group. Additionally, CA-enriched Aoil had the smallest content of volatile lipid oxidation products. Moreover, lecithin-CA particles were added to enhance the oxidative stability of Aoil. These findings show that CA is a potent antioxidant, capable of successfully preventing Aoil oxidation.

10.
Hortic Res ; 10(2): uhac262, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778183

ABSTRACT

Chinese native thymes (CNTs) in the genus Thymus (family Lamiaceae) are rich in bioactive terpenes, which exert antiviral, anti-inflammatory, antioxidation, immunological, and antimicrobial effects. Plants exhibit morphological variation, including erect-type and creeping-type growth forms; however, the molecular mechanisms underlying important horticultural traits have not been determined. Here, we collected 39 CNTs providing strategic plant resources for studies of lignin, terpenoids, and glandular trichomes of thymes. Using resequencing data as well as phenotypic, metabonomic, phylogenetic, population genetic, and transcriptomic analyses, we identified and characterized key genes involved in lignin biosynthesis, terpenoid biosynthesis, and glandular trichome formation. We found many regulatory genes or transcription factors related to these three important horticultural traits, including genes encoding caffeic acid O-methyltransferase (COMT), terpene synthase (TPS), v-myb avian myeloblastosis viral oncogene homolog (MYB), and homeodomain-leucine zipper (HD-ZIP). Population diversity analyses provided insights into growth form, terpenoid, and glandular trichome evolution in CNTs. Furthermore, our results revealed that T. mongolicus accessions might be wild ancestors, and T. quinquecostatus, T. quinquecostatus var. asiaticus, and T. quinquecostatus var. przewalskii might be transitional accessions that derived from T. mongolicus accessions. Finally, T. nervulosus, T. inaequalis, T. mandschuricus, T. curtus, T. amurensis, T. proximus, T. altaicus, T. roseus, and T. marschallianus showed high divergence. We found evidence for introgression between erect-type European cultivated thymes and CNTs. These findings improve our understanding of the determinants of variation in horticultural traits and provide candidate loci for research and breeding.

11.
BMC Plant Biol ; 23(1): 13, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36604636

ABSTRACT

BACKGROUND: Thyme derived essential oil and its components have numerous applications in pharmaceutical, food, and cosmetic industries, owing to their antibacterial, antifungal, and antiviral properties. To obtain thyme essential oil with different terpene composition, we developed new germplasm resources using the conventional hybridization approach. RESULTS: Phenotypic characteristics, including essential oil yield and composition, glandular trichome density, plant type, and fertility, of three wild Chinese and seven European thyme species were evaluated. Male-sterile and male-fertile thyme species were crossed in different combinations, and two F1 populations derived from Thymus longicaulis (Tl) × T. vulgaris 'Fragrantissimus' (Tvf) and T. vulgaris 'Elsbeth' (Tve) × T. quinquecostatus (Tq) crosses were selected, with essential oil yield and terpene content as the main breeding goals. Simultaneously, simple sequence repeat (SSR) primers were developed based on the whole-genome sequence of T. quinquecostatus to authenticate the F1 hybrids. A total of 300 primer pairs were selected, and polymerase chain reaction (PCR) was carried out on the parents of the two hybrid populations (Tl, Tvf, Tve, and Tq). Based on the chemotype of the parents and their F1 progenies, we examined the expression of genes encoding two γ-terpinene synthases, one α-terpineol synthase, and maybe one geraniol synthase in all genotypes by quantitative real-time PCR (qRT-PCR). CONCLUSION: We used hybridization to create new germplasm resources of thyme, developed SSR markers based on the whole-genome sequence of T. quinquecostatus, and screened the expression of monoterpene synthase genes in thyme. The results of this study provide a strong foundation for the creation of new germplasm resources, construction of the genetic linkage maps, and identification of quantitative trait loci (QTLs), and help gain insight into the mechanism of monoterpenoids biosynthesis in thyme.


Subject(s)
Oils, Volatile , Thymus Plant , Thymus Plant/genetics , Thymus Plant/metabolism , Plant Breeding , Thymol/metabolism , Microsatellite Repeats/genetics
12.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677644

ABSTRACT

Nowadays, the demand for rosemary essential oils (REOs) in the cosmetic, food, and pharmaceutical industries is increasing, and the abundant germplasm resources of rosemary provide more possibilities for functional applications. The REOs from six cultivars were selected to evaluate and compare their bioactivities. REOs have good cellular antioxidant activity in scavenging reactive oxygen species, and the technology for order preference by similarity to an ideal solution (TOPSIS)-random forest multivariate model indicated that 'Dutch Mill' REO has the best antioxidant activity, which is closely related to its verbenone content. In addition, α-pinene-dominant REOs are more toxic to human keratinocytes, which is closely related to the content of α-pinene, as revealed by multivariate analyses. Moreover, anti-proliferative assays on six cancer cell lines showed that all REOs have a higher anti-proliferative ability against human pancreatic cancer cell line SW1990 and gastric epithelial cell line NCI-N87. Among them, 'Miss Jessopp's Upright' and 'Blue Lagoon' REOs exhibit more prominent anti-proliferative activity. Our study provides a reference value for exploring the application potential of different REOs by evaluating their differences in chemical composition and bioactivity.


Subject(s)
Oils, Volatile , Rosmarinus , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Rosmarinus/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Phytochemicals/pharmacology , Keratinocytes
13.
Food Chem ; 403: 134393, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36191417

ABSTRACT

This study developed an intelligent and antibacterial packaging film using a chitosan matrix embedding oregano essential oil (OEO) and black rice bran anthocyanin (BRBA). Herein, OEO and BRBA were immobilized into the chitosan matrix through noncovalent bonds and uniformly distributed in the films. The chitosan-OEO-BRBAⅡ film exhibited excellent mechanical, antibacterial, antioxidant, and UV-vis light barrier properties, and sensitive and rapid response to pH/NH3. Furthermore, fresh pork was coated with the film for monitoring the freshness and preservation efficiency at 4 °C for 12 days. The film effectively improved the quality indices of pork, including the sensory index, total viable counts, pH, TVB-N value, and color of pork during the storage at 4 °C. The film reduced the abundance of spoilage bacteria related to stress tolerance, pathogenicity, and biofilm formation in the pork. Their odorous volatiles appeared later and were less than those in the untreated group.


Subject(s)
Chitosan , Oils, Volatile , Origanum , Oryza , Pork Meat , Red Meat , Animals , Swine , Origanum/chemistry , Chitosan/chemistry , Oils, Volatile/chemistry , Anthocyanins/chemistry , Oryza/chemistry , Food Packaging , Red Meat/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogen-Ion Concentration
14.
Antibiotics (Basel) ; 11(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421318

ABSTRACT

Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.

15.
Animals (Basel) ; 12(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36359131

ABSTRACT

This study aimed to investigate the potential effects of OEO on production performance, egg quality, fatty acid composition in yolk, and cecum microbiota of hens in the late phase of production. A total of 350 58-week-old Jing Tint Six laying hens were randomly divided into five groups: (1) fed a basal diet (control); (2) fed a basal diet + 5 mg/kg flavomycin (AGP); (3) fed a basal diet + 100 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO1); (4) fed a basal diet + 200 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO2); (5) fed a basal diet + 300 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO3). Compared to the control group, group EO2 exhibited higher (p < 0.05) egg production during weeks 5−8 and 1−8. EO2 had a lower feed conversion ratio than the control group during weeks 1−8. The content of monounsaturated fatty acid (MUFA) in EO2 was higher (p < 0.05) than that of the control and AGP groups. EO2 increased (p < 0.05) the abundance of Actinobacteriota and decreased the abundance of Desulfovibri in the cecum. The abundances of Anaerofilum, Fournierella, Fusobacterium, and Sutterella were positively correlated with egg production, feed conversion ratio, and average daily feed intake, while the abundances of Bacteroides, Desulfovibrio, Lactobacillus, Methanobrevibacter, and Rikenellaceae_RC9_gut_group were negatively correlated with egg production, feed conversion ratio, and average daily feed intake. Dietary supplementation with 200 mg/kg OEO and 20 mg/kg cinnamaldehyde could improve egg-production performance, decrease feed conversion ratio, and alter the fatty acid and microbial composition of eggs from late-phase laying hens.

16.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36362019

ABSTRACT

Origanum vulgare, belonging to the Lamiaceae family, is a principal culinary herb used worldwide which possesses great antioxidant and antibacterial properties corresponding to various volatile organic components (VOCs). However, the metabolite profiles and underlying biosynthesis mechanisms of elaborate tissues (stems, leaves, bracts, sepals, petals) of Origanum vulgare have seldom been reported. Here, solid-phase microextraction-gas chromatography/mass spectrometry results showed that Origanum vulgare 'Hot and Spicy' (O. vulgare 'HS') was extremely rich in carvacrol and had the tissue dependence characteristic. Moreover, a full-length transcriptome analysis revealed carvacrol biosynthesis and its tissue-specific expression patterns of 'upstream' MVA/MEP pathway genes and 'downstream' modifier genes of TPSs, CYPs, and SDRs. Furthermore, the systems biology method of modular organization analysis was applied to cluster 16,341 differently expressed genes into nine modules and to identify significant carvacrol- and peltate glandular trichome-correlated modules. In terms of these positive and negative modules, weighted gene co-expression network analysis results showed that carvacrol biosynthetic pathway genes are highly co-expressed with TF genes, such as ZIPs and bHLHs, indicating their involvement in regulating the biosynthesis of carvacrol. Our findings shed light on the tissue specificity of VOC accumulation in O. vulgare 'HS' and identified key candidate genes for carvacrol biosynthesis, which would allow metabolic engineering and breeding of Origanum cultivars.


Subject(s)
Oils, Volatile , Origanum , Origanum/chemistry , Oils, Volatile/chemistry , Plant Breeding , Cymenes
17.
Molecules ; 27(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235238

ABSTRACT

Origanum vulgare L. (oregano) is an aromatic plant with wide applications in the food and pharmaceutical industries. Cronobacter sakazakii, which has a high detection rate in powdered infant formula, adversely impacts susceptible individuals. Oregano essential oil (OEO) is a natural antibacterial agent that can be used to fight bacterial contamination. Here, OEO chemical compounds from eight oregano varieties were analyzed by gas chromatography-mass spectrometry and their antibacterial properties were assessed. The eight OEOs were clustered into two groups and were more diverse in group 2 than in group 1. Six compounds, including p-cymene, 3-thujene, γ-terpinene, thymol, carvacrol, and caryophyllene, were shared by eight OEOs. Among the eight oregano varieties, OEOs from O. vulgare sc2 had the strongest antibacterial activity against C. sakazaki, with the inhibition zone of 18.22mm. OEOs from O. vulgare jx, O. 'Nvying', O. vulgare 'Ehuang', and O. vulgare ssp. virens were also potent. Moreover, the antibacterial activity of OEOs was positively correlated with the relative content of thymol. As the main OEO antibacterial compound, thymol affected the normal growth and metabolism of C. sakazakii cells by destroying the bacterial membrane and decreasing the intracellular ATP concentration. Thus, in light of the antibacterial activity detected in the OEOs from the eight oregano varieties, this study provides a theoretical foundation for oregano cultivar management and development.


Subject(s)
Cronobacter sakazakii , Oils, Volatile , Origanum , Adenosine Triphosphate , Anti-Bacterial Agents/pharmacology , Humans , Oils, Volatile/chemistry , Origanum/chemistry , Thymol/chemistry
18.
Plant Commun ; 3(6): 100413, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35841150

ABSTRACT

Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Celak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.


Subject(s)
Thymus Plant , Thymus Plant/genetics , Thymus Plant/metabolism , Trichomes/genetics , Trichomes/metabolism , Phylogeny , Monoterpenes/metabolism , Chromosomes/metabolism
19.
Plant Physiol Biochem ; 185: 25-34, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35649290

ABSTRACT

The plant hormone, methyl jasmonate (MeJA), is an orthodox elicitor of secondary metabolites, including terpenoids. Lavandula angustifolia is an important aromatic plant generating, yet few studies have been performed to evaluate the function of MeJA on the biosynthesis of terpenoids in lavender. Five treatments (with concentrations of 0, 0.4, 4, 8, and 16 mM) were set, and the physiological indicators of each group were determined after 0, 6, 12, 24, 48, and 72 h. The results illustrate that (1) MeJA could affect the diurnal rhythm of the emission of volatiles and MeJA acted in a dose-dependent and time-dependent manner; (2) 8 mM MeJA treatment increased the total content of the volatiles, and the contents of monoterpenoids and sesquiterpenoids were up-regulated 0.46- and 0.74- fold than the control at 24 h and 12 h, respectively; (3) after MeJA treatment, all the genes expression analyzed changed to varying degrees, of which 3-carene synthase (La3CARS) gene changed most significantly (7.66- to 38.02- fold than the control); (4) MeJA application was associated with a rise in glandular trichome density. The positive effects of MeJA indicate that the exogenous application of MeJA could be a beneficial mean for studies on the biosynthesis of terpenoids in lavender.


Subject(s)
Lavandula , Acetates/metabolism , Acetates/pharmacology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Lavandula/genetics , Lavandula/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Terpenes/metabolism
20.
BMC Plant Biol ; 22(1): 289, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698036

ABSTRACT

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, are essential regulators of plant terpenoid biosynthesis and response to stresses. Lavender has more than 75 volatile terpenoids, yet few TFs have been identified to be involved in the terpenoid biosynthesis. RESULTS: Based on RNA-Seq, reverse transcription-quantitative polymerase chain reaction, and transgenic technology, this study characterized the stress-responsive transcription factor LaMYC4 regulates terpenoid biosynthesis. Methyl jasmonate (MeJA) treatment increased volatile terpenoid emission, and the differentially expressed gene LaMYC4 was isolated. LaMYC4 expression level was higher in leaf than in other tissues. The expression of LaMYC4 decreased during flower development. The promoter of LaMYC4 contained hormone and stress-responsive regulatory elements and was responsive to various treatments, including UV, MeJA treatment, drought, low temperature, Pseudomonas syringae infection, and NaCl treatment. LaMYC4 overexpression increased the levels of sesquiterpenoids, including caryophyllenes, in Arabidopsis and tobacco plants. Furthermore, the expression of crucial node genes involved in terpenoid biosynthesis and glandular trichome number and size increased in transgenic tobacco. CONCLUSIONS: We have shown that the stress-responsive MYC TF LaMYC4 from 'Jingxun 2' lavender regulates volatile terpenoid synthesis. This study is the first to describe the cloning of LaMYC4, and the results help understand the role of LaMYC4 in terpenoid biosynthesis.


Subject(s)
Arabidopsis , Lavandula , Arabidopsis/genetics , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Lavandula/genetics , Lavandula/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Terpenes/metabolism , Nicotiana/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...