Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(9): 4481-4494, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764752

ABSTRACT

Four different high-entropy spinel oxide ferrite (HESO) electrode materials containing 5-6 distinct metals were synthesized by a simple, rapid combustion synthesis process and evaluated as conversion anode materials in lithium half-cells. All showed markedly superior electrochemical performance compared to conventional spinel ferrites such as Fe3O4 and MgFe2O4, having capacities that could be maintained above 600 mAh g-1 for 150 cycles, in most cases. X-ray absorption spectroscopy (XAS) results on pristine, discharged, and charged electrodes show that Fe, Co, Ni, and Cu are reduced to the elemental state during the first discharge (lithiation), while Mn is only slightly reduced. Upon recharge (delithiation), Fe is reoxidized to an average oxidation state of about 2.6+, while Co, Ni, and Cu are not reoxidized. The ability of Fe to be oxidized past 2+ accounts for the high capacities observed in these materials, while the presence of metallic elements after the initial lithiation provides an electronically conductive network that aids in charge transfer.

2.
Nat Commun ; 15(1): 430, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38199989

ABSTRACT

Lithium-ion batteries play a crucial role in decarbonizing transportation and power grids, but their reliance on high-cost, earth-scarce cobalt in the commonly employed high-energy layered Li(NiMnCo)O2 cathodes raises supply-chain and sustainability concerns. Despite numerous attempts to address this challenge, eliminating Co from Li(NiMnCo)O2 remains elusive, as doing so detrimentally affects its layering and cycling stability. Here, we report on the rational stoichiometry control in synthesizing Li-deficient composite-structured LiNi0.95Mn0.05O2, comprising intergrown layered and rocksalt phases, which outperforms traditional layered counterparts. Through multiscale-correlated experimental characterization and computational modeling on the calcination process, we unveil the role of Li-deficiency in suppressing the rocksalt-to-layered phase transformation and crystal growth, leading to small-sized composites with the desired low anisotropic lattice expansion/contraction during charging and discharging. As a consequence, Li-deficient LiNi0.95Mn0.05O2 delivers 90% first-cycle Coulombic efficiency, 90% capacity retention, and close-to-zero voltage fade for 100 deep cycles, showing its potential as a Co-free cathode for sustainable Li-ion batteries.

3.
Adv Mater ; 36(21): e2312027, 2024 May.
Article in English | MEDLINE | ID: mdl-38252915

ABSTRACT

Calcination is a solid-state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high-performance cathode materials. Here, correlative in situ X-ray absorption/scattering spectroscopy is used to investigate the calcination of nickel-based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data-driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low-temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally-ordered layered phase upon full lithiation but remains small in size. Subsequent high-temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination.

4.
Small ; 19(28): e2301731, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37173815

ABSTRACT

The commercialization of high-energy Li-metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two-step electrochemical process, where Cu-Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm-2 and under a high current density of 10 mA cm-2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X-ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.

5.
ACS Mater Lett ; 5(4): 979-984, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37034383

ABSTRACT

An advanced synchrotron-based in situ X-ray diffraction (XRD) technique is successfully developed and employed to track and monitor the formation and phase selection of cobalt (Co) in electrodeposition in real time and verify DFT computational results. The impacts of a number of controlling factors including the pH of the electrolyte and deposition overpotential are systematically studied. The results show that the yielded phase of the electrodeposited Co is controlled by both thermodynamics and kinetics. The low pH low overpotential condition favors the formation of the thermodynamically stable fcc phase. While the high pH high overpotential condition promotes the formation of the metastable hcp phase. The experimental results agree well with the nanometric phase diagram computed with DFT. Layer-by-layer alternative stacking of fcc-hcp polymorphic phases can be facilely fabricated by just varying the overpotential. This work not only offers an effective means to control the phase of electroplating of Co but also presents a new approach to reveal the fundamental insights of the formation of metals under electrochemical reduction driving force.

6.
ACS Cent Sci ; 7(10): 1676-1687, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729411

ABSTRACT

Aqueous electrochemical systems suffer from a low energy density due to a small voltage window of water (1.23 V). Using thicker electrodes to increase the energy density and highly concentrated "water-in-salt" (WIS) electrolytes to extend the voltage range can be a promising solution. However, thicker electrodes produce longer diffusion pathways across the electrode. The highly concentrated salts in WIS electrolytes alter the physicochemical properties which determine the transport behaviors of electrolytes. Understanding how these factors interplay to drive complex transport phenomena in WIS batteries with thick electrodes via deterministic analysis on the rate-limiting factors and kinetics is critical to enhance the rate-performance in these batteries. In this work, a multimodal approach-Raman tomography, operando X-ray diffraction refinement, and synchrotron X-ray 3D spectroscopic imaging-was used to investigate the chemical heterogeneity in LiV3O8-LiMn2O4 WIS batteries with thick porous electrodes cycled under different rates. The multimodal results indicate that the ionic diffusion in the electrolyte is the primary rate-limiting factor. This study highlights the importance of fundamentally understanding the electrochemically coupled transport phenomena in determining the rate-limiting factor of thick porous WIS batteries, thus leading to a design strategy for 3D morphology of thick electrodes for high-rate-performance aqueous batteries.

7.
Nanoscale ; 13(42): 17725-17736, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34515717

ABSTRACT

Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5-15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials' chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications.

8.
J Phys Chem Lett ; 12(33): 7908-7913, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34383509

ABSTRACT

Surface coating is commonly employed by industries to improve the cycling and thermal stability of high-nickel (Ni) transition metal (TM) layered cathodes for their practical use in lithium-ion batteries. Niobium (Nb) coating or substitution has been shown to be effective in stabilizing LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes; in addition, the electrochemical performance of the final products varies depending on the postprocessing. In this follow-up study, we use in situ synchrotron X-ray diffraction to investigate the kinetic processes and the involved structural evolution in Nb-coated NMC811 upon heat treatment. Quantitative structure analysis reveals thermally driven concurrent changes in the bulk and surface, in particular, the phase evolution of the coating layer and Nb/TM interdiffusion that facilitates penetration of Nb into the bulk and particle growth at the increased temperatures. Findings from this study highlight the new opportunities for the intended control of the structure and surface properties of high-Ni cathodes through surface coating in conjunction with postprocessing.

9.
Inorg Chem ; 60(2): 718-735, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33393766

ABSTRACT

Orthosilicates adopt the zircon structure types (I41/amd), consisting of isolated SiO4 tetrahedra joined by A-site metal cations, such as Ce and U. They are of significant interest in the fields of geochemistry, mineralogy, nuclear waste form development, and material science. Stetindite (CeSiO4) and coffinite (USiO4) can be formed under hydrothermal conditions despite both being thermodynamically metastable. Water has been hypothesized to play a significant role in stabilizing and forming these orthosilicate phases, though little experimental evidence exists. To understand the effects of hydration or hydroxylation on these orthosilicates, in situ high-temperature synchrotron and laboratory-based X-ray diffraction was conducted from 25 to ∼850 °C. Stetindite maintains its I41/amd symmetry with increasing temperature but exhibits a discontinuous expansion along the a-axis during heating, presumably due to the removal of water confined in the [001] channels, which shrink against thermal expansion along the a-axis. Additional in situ high-temperature Raman and Fourier transform infrared spectroscopy also confirmed the presence of the confined water. Coffinite was also found to expand nonlinearly up to 600 °C and then thermally decompose into a mixture of UO2 and SiO2. A combination of dehydration and dehydroxylation is proposed for explaining the thermal behavior of coffinite synthesized hydrothermally. Additionally, we investigated high-temperature structures of two coffinite-thorite solid solutions, uranothorite (UxTh1-xSiO4), which displayed complex variations in composition during heating that was attributed to the negative enthalpy of mixing. Lastly, for the first time, the coefficients of thermal expansion of CeSiO4, USiO4, U0.46Th0.54SiO4, and U0.9Th0.1SiO4 were determined to be αV = 14.49 × 10-6, 14.29 × 10-6, 17.21 × 10-6, and 17.23 × 10-6 °C-1, respectively.

10.
Angew Chem Int Ed Engl ; 60(32): 17350-17355, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-33217148

ABSTRACT

High-nickel cathodes attract immense interest for use in lithium-ion batteries to boost Li-storage capacity while reducing cost. For overcoming the intergranular-cracking issue in polycrystals, single-crystals are considered an appealing alternative, but aggravating concerns on compromising the ionic transport and kinetic properties. We report here a quantitative assessment of redox reaction in single-crystal LiNi0.8 Mn0.1 Co0.1 O2 using operando hard X-ray microscopy/spectroscopy, revealing a strong dependence of redox kinetics on the state of charge (SOC). Specifically, the redox is sluggish at low SOC but increases rapidly as SOC increases, both in bulk electrodes and individual particles. The observation is corroborated by transport measurements and finite-element simulation, indicating that the sluggish kinetics in single-crystals is governed by ionic transport at low SOC and may be alleviated through synergistic interaction with polycrystals integrated into a same electrode.

11.
Sci Adv ; 6(51)2020 Dec.
Article in English | MEDLINE | ID: mdl-33328240

ABSTRACT

In chemical reactions, the breaking and formation of chemical bonds usually need external energy to overcome the activation barriers. Conventional energy delivery transfers energy from heating sources via various media, hence losing efficiency and inducing side reactions. In contrast, microwave (MW) heating is known to be highly energy efficient through dipole interaction with polar media, but how exactly it transmits energy to initiate chemical reactions has been unknown. Here, we report a rigorous determination of energy delivery mechanisms underlying MW-enabled rapid hydrothermal synthesis, by monitoring the structure and temperature of all the involved components as solid-liquid intercalation reaction occurs using in situ synchrotron techniques. We reveal a hitherto unknown direct energy transmission between MW irradiation source and the targeted reactants, leading to greatly reduced energy waste, and so the ultrafast kinetics at low temperature. These findings open up new horizons for designing material synthesis reactions of high efficiency and precision.

12.
ACS Nano ; 14(8): 10276-10283, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32639719

ABSTRACT

Metal fluorides present a high redox potential among the conversion-type compounds, which make them specially work as cathode materials of lithium ion batteries. To mitigate the notorious cycling instability of conversion-type materials, substitutions of anion and cation have been proposed but the role of foreign elements in reaction pathway is not fully assessed. In this work, we explored the lithiation pathway of a rutile-Fe0.9Co0.1OF cathode with multimodal analysis, including ex situ and in situ transmission electron microscopy and synchrotron X-ray techniques. Our work revealed a prolonged intercalation-extrusion-cation disordering process during phase transformations from the rutile phase to rocksalt phase, which microscopically corresponds to topotactic rearrangement of Fe/Co-O/F octahedra. During this process, the diffusion channels of lithium transformed from 3D to 2D while the corner-sharing octahedron changed to edge-sharing octahedron. DFT calculations indicate that the Co and O cosubstitution of the Fe0.9Co0.1OF cathode can improve its structural stability by stabilizing the thermodynamic semistable phases and reducing the thermodynamic potentials. We anticipate that our study will inspire further explorations on untraditional intercalation systems for secondary battery applications.

13.
Nat Mater ; 19(10): 1088-1095, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32424371

ABSTRACT

In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na0.67MO2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3' and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.

14.
ACS Appl Mater Interfaces ; 12(20): 22862-22872, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32343545

ABSTRACT

Although "water-in-salt" electrolytes have opened a new pathway to expand the electrochemical stability window of aqueous electrolytes, the electrode instability and irreversible proton co-insertion caused by aqueous media still hinder the practical application, even when using exotic fluorinated salts. In this study, an accessible hybrid electrolyte class based on common sodium salts is proposed, and crucially an ethanol-rich media is introduced to achieve highly stable Na-ion electrochemistry. Here, ethanol exerts a strong hydrogen-bonding effect on water, simultaneously expanding the electrochemical stability window of the hybridized electrolyte to 2.5 V, restricting degradation activities, reducing transition metal dissolution from the cathode material, and improving electrolyte-electrode wettability. The binary ethanol-water solvent enables the impressive cycling of sodium-ion batteries based on perchlorate, chloride, and acetate electrolyte salts. Notably, a Na0.44MnO2 electrode exhibits both high capacity (81 mAh g-1) and a remarkably long cycle life >1000 cycles at 100 mA g-1 (a capacity decay rate per cycle of 0.024%) in a 1 M sodium acetate system. The Na0.44MnO2/Zn full cells also show excellent cycling stability and rate capability in a wide temperature range. The gained understanding of the hydrogen-bonding interactions in the hybridized electrolyte can provide new battery chemistry guidelines in designing promising candidates for developing low-cost and long-lifespan batteries based on other (Li+, K+, Zn2+, Mg2+, and Al3+) systems.

15.
Inorg Chem ; 59(1): 226-234, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31829567

ABSTRACT

Tremendous efforts have been devoted to the design of solid Li+ electrolytes and the development of all-solid-state batteries. Compared with conventional Li-ion batteries, which use flammable liquid organic electrolytes, all-solid-state batteries show significant advantages in safety. In this work, a novel lithium chlorothiophosphate compound, Li15P4S16Cl3, is discovered. The crystal structure and electrochemical properties are investigated. Li15P4S16Cl3 can be synthesized as a pure phase via a facile solid-state reaction by heating a ball-milled mixture of Li2S, P2S5, and LiCl at 360 °C. The crystal structure of Li15P4S16Cl3 was refined against neutron and synchrotron powder X-ray diffraction data, revealing that it crystallizes in the space group I4̅3d. The Li+ transport in Li15P4S16Cl3 was also investigated by multiple solid-state NMR methods, including variable-temperature NMR line-shape analysis, NMR relaxometry, and pulsed-field-gradient NMR. Li15P4S16Cl3 shows good thermodynamic stability and can be synthesized at relatively low temperature. Although it exhibits a low ionic conductivity at room temperature, it can serve as a new motif crystal structure for the design and development of new solid-state electrolytes.

16.
J Phys Chem B ; 123(45): 9654-9667, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31638809

ABSTRACT

As a candidate of Martian salts, calcium perchlorate [Ca(ClO4)2] has the potential to stabilize liquid water on the Martian surface because of its hygroscopicity and low freezing temperature when forming aqueous solution. These two properties of electrolytes in general have been suggested to result from the specific cation-anion-water interaction (ion pairing) that interrupts the structure of solvent water. To investigate how this concentration-dependent and temperature-dependent ion pairing process in aqueous Ca(ClO4)2 solution leads to its high hygroscopic property and the extreme low eutectic temperature, we have conducted two sets of experiments. First, the effects of concentration on aqueous calcium perchlorate from 3 to 7.86 m on ion pairing were investigated using Raman spectroscopy. Deconvolution of the Raman symmetric stretching band (ν1) of ClO4- showed the enhanced formation of solvent-shared ion pairs upon increasing salt concentration at room temperature. We have confirmed that the low tendency of forming contact ion pairs in concentrated solution contributes to the high hygroscopicity of the salt. Second, the near eutectic samples were studied as a function of temperature by both combined differential scanning calorimetry-Raman spectroscopic experiments and in situ X-ray diffraction. The number of solvent-shared ion pairs was found to increase with decreasing temperature when cooled below the temperature of maximum density of the solution, driven by a change in water toward an ice-like structure in the supercooled regime. The massive presence of solvent-shared ion pairs in turn limits the development of the long-range order in the tetrahedral networks of water molecules, which is responsible for the extremely low eutectic point and deep supercooling effects observed in the Ca(ClO4)2-H2O system.

17.
J Phys Chem Lett ; 10(10): 2561-2566, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31050438

ABSTRACT

Benefiting from the nanoscale effect, some metastable compounds can be synthesized in nanoparticles under normal conditions. The new intermetallic NiSn5 phase is synthesized by us for the first time by using a seed crystal induction method. This tetragonal phase in the P4/ mcc space group has stoichiometric Ni atom defects, yielding Ni0.62Sn5. A study of the growth mechanism reveals that the FeSn5/CoSn5 seed crystal plays a vital role in the formation of the NiSn5 phase. An investigation of the phase evolution during lithiation/delithiation processes indicates the irreversibility of NiSn5 as an anode for lithium ion batteries.

18.
J Am Chem Soc ; 141(16): 6680-6689, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30932488

ABSTRACT

While sodium-ion batteries (SIBs) hold great promise for large-scale electric energy storage and low speed electric vehicles, the poor capacity retention of the cathode is one of the bottlenecks in the development of SIBs. Following a strategy of using lithium doping in the transition-metal layer to stabilize the desodiated structure, we have designed and successfully synthesized a novel layered oxide cathode P2-Na0.66Li0.18Fe0.12Mn0.7O2, which demonstrated a high  capacity of 190 mAh g-1 and a remarkably high capacity retention of ∼87% after 80 cycles within a wide voltage range of 1.5-4.5 V. The outstanding stability is attributed to the reversible migration of lithium during cycling and the elimination of the detrimental P2-O2 phase transition, revealed by ex situ and in situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy.

19.
Front Plant Sci ; 10: 139, 2019.
Article in English | MEDLINE | ID: mdl-30846993

ABSTRACT

China is the world's leading country for potato production but potato is not native to China. To gain insights into the genetic diversity of potato germplasm various studies have been performed but no study has been reported for potato landraces in China. To improve the available genepool for future potato breeding programs, a diverse population containing 292 genotypes (including foreign elite lines, local landraces and cultivars) was developed and genotyped using 30 SSR markers covering the entire potato genome. A total of 174 alleles were detected with an average of 5.5 alleles per locus. The model-based structure analysis discriminated the population into two main sub-groups, which can be further subdivided into seven groups based on collection sites. One sub-group (P1) revealed less genetic diversity than other (P2) and contained a higher number of commercial cultivars possibly indicating a slight reduction in diversity due to selection in breeding programs. The P2 sub-group showed a wider range of genetic diversity with more new and unique alleles attained from wild relatives. The potato landraces, clustered in sub-population P1 may be derived from historical population imported from ancient European and International Potato Center genotypes while sub-population P2 may be derived from modern populations from International Potato Center and European genotypes. It is proposed that in the first step, the potato genotypes were introduced from Europe to China, domesticated as landraces, and then hybridized for modern cultivars.

20.
Inorg Chem ; 57(22): 14396-14400, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30378431

ABSTRACT

TiF3 exhibits a rhombohedral to ReO3-type cubic phase transformation at ∼340 K. Here we report that, by introducing ZrF4 into TiF3, the cubic phase is stabilized at least down to 123 K in the Ti1- xZr xF3+ x compounds. All compounds exhibit low thermal expansion (LTE) between 123 and 623 K, and a nearly zero thermal expansion (ZTE) was obtained in Ti0.7Zr0.3F3.3 (αL = 0.91 ppm/K). The analysis of pair distribution function reveals that the cation-centered octahedra are partially changed to pentagonal bipyramids in Ti1- xZr xF3+ x due to the excess fluorines relative to the case of TiF3. Therefore, the cooperative rotation of the polyhedra tends to be restricted, and the cubic phase is thus stabilized. The restrained polyhedral rotations compete against the lattice softening caused by the introduction of Zr4+, giving rise to the LTE. Our present strategy is applicable to other rhombohedral metal trifluorides for the design of new isotropic ZTE materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...