Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915659

ABSTRACT

Human cone photoreceptors differ from rods and serve as the retinoblastoma cell-of-origin. Here, we used deep full-length single-cell RNA-sequencing to distinguish post-mitotic cone and rod developmental states and cone-specific features that contribute to retinoblastomagenesis. The analyses revealed early post-mitotic cone- and rod-directed populations characterized by higher THRB or NRL regulon activities, an immature photoreceptor precursor population with concurrent cone and rod gene and regulon expression, and distinct early and late cone and rod maturation states distinguished by maturation-associated declines in RAX regulon activity. Unexpectedly, both L/M cone and rod precursors co-expressed NRL and THRB RNAs, yet they differentially expressed functionally antagonistic NRL isoforms and prematurely terminated THRB transcripts. Early L/M cone precursors exhibited successive expression of lncRNAs along with MYCN, which composed the seventh most L/M-cone-specific regulon, and SYK, which contributed to the early cone precursors' proliferative response to RB1 loss. These findings reveal previously unrecognized photoreceptor precursor states and a role for early cone-precursor-intrinsic SYK expression in retinoblastoma initiation.

2.
Dis Model Mech ; 16(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37902188

ABSTRACT

Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 µm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Cone Photoreceptor Cells , Humans , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Organoids , Cell Differentiation
3.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909527

ABSTRACT

Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.

4.
Int J Nanomedicine ; 13: 3839-3852, 2018.
Article in English | MEDLINE | ID: mdl-30013339

ABSTRACT

PURPOSE: The purpose of this study was to investigate the feasibility and sensitivity of cellular magnetic resonance imaging (MRI) with ferumoxytol nanocomplex-labeled macrophages at ultrahigh magnetic field of 7 T. MATERIALS AND METHODS: THP-1-induced macrophages were labeled using self-assembling heparin + protamine + ferumoxytol nanocomplexes which were injected into a gelatin phantom visible on both microscope and MRI. Susceptibility-weighted imaging (SWI) and balanced steady-state free precession (bSSFP) pulse sequences were applied at 3 and 7 T. The average, maximum intensity projection, and root mean square combined images were generated for phase-cycled bSSFP images. The signal-to-noise ratio and contrast-to-noise ratio (CNR) efficiencies were calculated. Ex vivo experiments were then performed using a formalin-fixed pig brain injected with100 and ~1,000 labeled cells, respectively, at both 3 and 7 T. RESULTS: A high cell labeling efficiency (.90%) was achieved with heparin + protamine + ferumoxytol nanocomplexes. Less than 100 cells were detectable in the gelatin phantom at both 3 and 7 T. The 7 T data showed more than double CNR efficiency compared to the corresponding sequences at 3 T. The CNR efficiencies of phase-cycled bSSFP images were higher compared to those of SWI, and the root mean square combined bSSFP showed the highest CNR efficiency with minimal banding. Following co-registration of microscope and MR images, more cells (51/63) were detected by bSSFP at 7 T than at 3 T (36/63). On pig brain, both100 and ~1,000 cells were detected at 3 and 7 T. While the cell size appeared larger due to blooming effects on SWI, bSSFP allowed better contrast to precisely identify the location of the cells with higher signal-to-noise ratio efficiency. CONCLUSION: The proposed cellular MRI with ferumoxytol nanocomplex-labeled macrophages at 7 T has a high sensitivity to detect, 100 cells. The proposed method has great translational potential and may have broad clinical applications that involve cell types with a primary phagocytic phenotype.


Subject(s)
Ferrosoferric Oxide/chemistry , Macrophages/metabolism , Magnetic Fields , Magnetic Resonance Imaging , Nanoparticles/chemistry , Staining and Labeling , Animals , Brain/metabolism , Cell Line , Contrast Media/chemistry , Gelatin/chemistry , Humans , Phantoms, Imaging , Signal-To-Noise Ratio , Swine
5.
Nat Commun ; 9(1): 401, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374155

ABSTRACT

Kruppel-like factor 4 (Klf4) is a zinc-finger-containing protein that plays a critical role in diverse cellular physiology. While most of these functions attribute to its role as a transcription factor, it is postulated that Klf4 may play a role other than transcriptional regulation. Here we demonstrate that Klf4 loss in neural progenitor cells (NPCs) leads to increased neurogenesis and reduced self-renewal in mice. In addition, Klf4 interacts with RNA-binding protein Staufen1 (Stau1) and RNA helicase Ddx5/17. They function together as a complex to maintain NPC self-renewal. We report that Klf4 promotes Stau1 recruitment to the 3'-untranslated region of neurogenesis-associated mRNAs, increasing Stau1-mediated mRNA decay (SMD) of these transcripts. Stau1 depletion abrogated SMD of target mRNAs and rescued neurogenesis defects in Klf4-overexpressing NPCs. Furthermore, Ddx5/17 knockdown significantly blocked Klf4-mediated mRNA degradation. Our results highlight a novel molecular mechanism underlying stability of neurogenesis-associated mRNAs controlled by the Klf4/Ddx5/17/Stau1 axis during mammalian corticogenesis.


Subject(s)
Cerebral Cortex/metabolism , DEAD-box RNA Helicases/genetics , Kruppel-Like Transcription Factors/genetics , Neural Stem Cells/metabolism , Neurogenesis/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Animals , Cell Proliferation , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , DEAD-box RNA Helicases/metabolism , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Pregnancy , RNA Stability , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/toxicity , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 114(50): E10717-E10725, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29180410

ABSTRACT

The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation. However, the mechanism of translocation and how it regulates neuronal differentiation remain unclear. Here, we identified Smek1 and Smek2 as Ryk-ICD partners that regulate its nuclear localization and function together with Ryk-ICD in the nucleus through chromatin recruitment and gene transcription regulation. Smek1/2 double knockout mice displayed pronounced defects in the production of cortical neurons, especially interneurons, while the neural stem cell population increased. In addition, both Smek and Ryk-ICD bound to the Dlx1/2 intergenic regulator element and were involved in its transcriptional regulation. These findings demonstrate a mechanism of the Ryk signaling pathway in which Smek1/2 and Ryk-ICD work together to mediate neural cell fate during corticogenesis.


Subject(s)
Molecular Chaperones/metabolism , Neurogenesis/physiology , Phosphoprotein Phosphatases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Coenzymes/metabolism , HEK293 Cells , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...