Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593178

ABSTRACT

The C-F bond is the strongest covalent single bond (126 kcal/mol) in carbon-centered bonds, in which the highest electronegativity of fluorine (χ = 4) gives rise to the shortest bond length (1.38 Å) and the smallest van der Waals radius (rw = 1.47 Å), resulting in enormous challenges for activation and transformation. Herein, C-F conversion was realized via photouranium-catalyzed hydroxylation of unactivated aryl fluorides using water as a hydroxyl source to deliver multifunctional phenols under ambient conditions. The activation featured cascade sequences of single electron transfer (SET)/hydrogen atom transfer (HAT)/oxygen atom transfer (OAT), highly integrated from the excited uranyl cation. The *UO22+ prompted water splitting under mild photoexcitation, caging the active oxygen in a peroxo-bridged manner for the critical OAT process and releasing hydrogen via the HAT process.

2.
Angew Chem Int Ed Engl ; 62(52): e202314379, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37950389

ABSTRACT

A disulfide click strategy is disclosed for stapling to enhance the metabolic stability and cellular permeability of therapeutic peptides. A 17-membered library of stapling reagents with adjustable lengths and angles was established for rapid double/triple click reactions, bridging S-terminal peptides from 3 to 18 amino acid residues to provide 18- to 48-membered macrocyclic peptides under biocompatible conditions. The constrained peptides exhibited enhanced anti-HCT-116 activity with a locked α-helical conformation (IC50 =6.81 µM vs. biological incompetence for acyclic linear peptides), which could be unstapled for rehabilitation of the native peptides under the assistance of tris(2-carboxyethyl)phosphine (TCEP). This protocol assembles linear peptides into cyclic peptides controllably to retain the diverse three-dimensional conformations, enabling their cellular uptake followed by release of the disulfides for peptide delivery.


Subject(s)
Disulfides , Peptides , Disulfides/chemistry , Peptides/chemistry , Peptides, Cyclic , Amino Acids , Molecular Conformation
3.
STAR Protoc ; 4(1): 102114, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36861828

ABSTRACT

Here, we present an efficient protocol for stereoselective 4N-based domino dimerization in one single step, establishing a 22-membered library of asperazine A analogs. We describe steps for performing a gram-scale 2N-monomer to access the unsymmetrical 4N-dimer. We detail the synthesis of the desired dimer 3a as a yellow solid in 78% yield. This process demonstrates the 2-(iodomethyl)cyclopropane-1,1-dicarboxylate to be an iodine cation source. The protocol is limited to unprotected aniline of 2N-monomer. For complete details on the use and execution of this protocol, please refer to Bai et al. (2022).1.


Subject(s)
Carboxylic Acids , Diketopiperazines , Dimerization , Gene Library
4.
J Am Chem Soc ; 143(49): 20609-20615, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34871491

ABSTRACT

Dimeric cyclotryptamine alkaloids typically feature vicinal all-carbon quaternary stereocenters and four nitrogen atoms. In comparison with the actual biosynthetic tryptophan derivatives, we designed the 2N-featured monomer 7, aiming to construct vicinal all-carbon quaternary stereocenters via a one-step dimerization process to access the 4N-featured isomeric members of this family. In this work, we disclose the first synthetic route to access the skeleton of (-)-isocalycanthine, featuring an iron-catalyzed oxidative dimerization reaction in a catalytic single-step operation with an overwhelming control of the absolute and relative stereochemistry. This strategy has been successfully applied to the total synthesis of (-)-calycanthine and 16 isocalycanthine derivatives, which demonstrates a new synthetic pathway for dimeric cyclotryptamine alkaloids.

5.
Org Lett ; 20(1): 292-295, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29272137

ABSTRACT

A concise and stereocontrolled strategy for the syntheses of oxygenated Aspidosperma and Vinca alkaloids, via a stereoselective intermolecular inverse-electron-demand [4 + 2] cycloaddition, a challenging α,ß-unsaturated ketone indolization rearrangement with excellent regio- and stereoselectivity, and an efficient Pd/C-catalyzed one-pot cascade reaction. The strategy has been demonstrated by the efficient asymmetric syntheses of antitumor drug (+)-vinblastine and five other oxygenated Aspidosperma alkaloids.

SELECTION OF CITATIONS
SEARCH DETAIL