Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 272: 125738, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359717

ABSTRACT

The sulfidation is considered as one of the most important environmental transformation processes of silver nanoparticles (AgNPs), which affects their transport, uptake and toxicity. Herein, based on the hollow fiber flow-field flow fractionation coupled with triple quadrupole inductively coupled plasma mass spectrometry (HF5-ICP-QQQ), we developed an efficient approach to accurately characterize the sulfidation process of AgNPs in aquatic solutions. HF5 could efficiently remove interferential ions and separate nanoparticles with different sizes online, and ICP-QQQ could accurately detect S element through monitoring 32S16O+ in mass shift mode. By the proposed method, two kinds of AgNPs, citrate-coated AgNPs and PVP-coated AgNPs, were selected as models to trace their transfer behaviors during the sulfidation. The results showed once AgNPs were exposed to Na2S solution, the overlapping fractograms of 32S16O+ and 107Ag+ were rapidly detected by HF5-ICP-QQQ to indicate the co-presence of Ag and S, and thus confirming the production of Ag2S and AgNPs underwent a rapid sulfidation process. There were substantial differences in the influence of the two coated agents on the stability of the particles under the conditions examined. In the presence of sulfide, PVP-coated AgNPs could maintain initial size distribution with higher stability, while the size distribution of citrate-coated AgNPs changed considerably. The developed HF5-ICP-QQQ method provides a reliable tool to identify and characterize the transformation process of AgNPs in aquatic solution, which contributed to a deeper understanding of the environmental fate and behavior of AgNPs with different coating.

2.
Sci Total Environ ; 881: 163222, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37019231

ABSTRACT

Micro- and nano-plastic (MNP) pollution has attracted public concerns. Currently, most environmental researches focus on large microplastics (MPs), while small MNPs that have great impacts on marine ecosystems are rarely reported. Understanding the pollution levels and distribution patterns of small MNPs could help assess their potential impacts on the ecosystem. Polystyrene (PS) MNPs were often used as models to assess their toxicity, hence, we collected 21 sites in a Chinese sea area (the Bohai Sea) to analyze their pollution level and horizontal distribution in surface water samples, and vertical distributions in five sites with the water depth >25 m. Samples were filtered by glass membranes (1 µm) to trap MPs, which were frozen, ground, dried, and detected by pyrolysis-gas chromatography-mass spectrometry (pyGC-MS); while the nanoplastics (NPs) in the filtrate were captured with alkylated ferroferric oxide (Fe3O4) to form aggregates, which were separated by glass membrane (300 nm) filtration for pyGC-MS determination. Small PS MPs (1-100 µm) and NPs (<1 µm) were detected in 18 samples with the mass concentrations ranging from <0.015 to 0.41 µg/L, indicating that PS MNPs are widely present in Bohai Sea. Our study contributes to understanding the pollution levels and distribution patterns of MNPs (<100 µm) in the marine system and provides valuable data for their further risk assessment.

3.
Environ Sci Technol ; 57(16): 6425-6434, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036754

ABSTRACT

The potential risk of various silver-containing nanoparticles (AgCNPs) in soils is related to the concentration, size, and speciation, but their determination remains a great challenge. Herein, we developed an effective method for determining the particle number, size, and species of dominant AgCNPs in soils, including nanoparticles of silver (Ag NPs), silver chloride (AgCl NPs), and silver sulfide (Ag2S NPs). By ultrasonication wand-assisted tetrasodium pyrophosphate extraction, these AgCNPs were extracted efficiently from soils. Then, multistep selective dissolution of Ag NPs, AgCl NPs, and whole Ag NPs/AgCl NPs/Ag2S NPs was achieved by 1% (v/v) H2O2, 5% (v/v) NH3·H2O, and 10 mM thiourea in 2% (v/v) acetic acid, respectively. Finally, the particle number concentration and size distribution of AgCNPs in the extracts and the remaining AgCNP particle number concentration after each dissolution were determined by single-particle inductively coupled plasma mass spectroscopy for speciation of the dominant AgCNPs. AgCNPs were detected in all five soil samples with the concentrations of 0.23-8.00 × 107 particles/g and sizes of 16-110 nm. Ag2S NPs were the main form of AgCNPs in the examined soils with the percentage range of 53.98-69.19%, followed by AgCl NPs (11.42-23.31%) and Ag NPs (7.78-16.19%). Our method offers a new approach for evaluating the occurrence and potential risk of AgCNPs in environmental soils.


Subject(s)
Metal Nanoparticles , Silver , Soil/chemistry , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Spectrum Analysis , Particle Size
4.
Sci Rep ; 12(1): 14847, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050402

ABSTRACT

Characterizing the permeability evolution and methane release is of great significance for the safe mining of the high gas outburst seams, as well as coal and gas simultaneous extraction. It contributes to reduce methane emissions from coal mining for greenhouse effect control. Theoretical analysis, laboratory testing, and numerical simulation are widely used methods to characterize the permeability and methane release with the treatment process of pressure-relief mining. However, these methods cannot fully reflect the complexity of filed practice. In this study, we report the effectiveness of protective coal seam (PCS) mining and the pressure-relief area in the protected coal seam (PDCS) based on detailed and integrated field measurements in a Chinese coal mine. To the best of our knowledge, it is the first time to measure the permeability coefficient and gas pressure evolution in the PDCS during the process of PCS longwall mining. The evolution of the permeability coefficient in the pressure-relief area during PCS mining can be divided into four stages: slowly decreasing, sharply increasing, gradually decreasing, and basically stable. The maximum permeability coefficient is 322 times of the initial value and stabilized at 100 times after the goaf compacted. The gas pressure evolution in the PDCS indicates that the strike pressure relief angle is 52.2° at the active longwall face zone, and 59.3° at the installation roadway side. The inclined pressure relief angles at the lower and upper sides of the longwall face are 75° and 78.9°, respectively. The residual gas content and gas pressure of the PDCS in the pressure-relief area are reduced to less than 6 m3/t and within 0.4 MPa, respectively. The field measurements further prove that pressure-relief mining can prevent coal and gas outbursts in PDCSs. The field observations in this paper can serve as benchmark evidence for theoretical analysis and numerical simulations, and also provide insights into realizing safety mining in similar conditions.

5.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36152483

ABSTRACT

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Subject(s)
Polystyrenes , Pyrolysis , Heating , Microplastics , Polystyrenes/chemistry , Temperature
6.
Food Chem ; 365: 130520, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34252623

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are recently recommended as food additives owing to their outstanding nutritive function. Therefore, understanding their comprehensive information and stability in food samples is highly necessitated. However, the characterization of ZnO NPs in the complex food matrices remains a great challenge, limiting an in-depth understanding of their transformation during food storage. In this study, the hollow fiber flow field-flow fractionation was combined with UV-Vis absorption spectroscopy and inductively coupled plasma optical emission spectroscopy to assess the dissolution behaviors of ZnO NPs in skimmed milk powder solutions by monitoring the changes in the residual ZnO NPs and the amount of dissolved Zn(II) ions. The simultaneous characterization of these two Zn species in skimmed milk powder solutions was achieved without the need for tedious sample pretreatments, and the dissolution of ZnO NPs in skimmed milk powder solutions had time- and temperature-dependent behaviors.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Milk , Powders , Solubility
7.
Sci Total Environ ; 724: 138309, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32272413

ABSTRACT

Transition metals in airborne particulate matter, especially those with aerodynamic diameters no more than 2.5 µm (PM2.5), have attracted considerable attention due to their potential environmental and human health risks. However, determination of these potential risks requires comprehensive knowledge of their dissolution behavior and residual size in aqueous media. Herein, we describe an analytical method for on-line determination of the soluble fraction of Zn as a model transition metal and the size of residual PM2.5 using hollow fiber flow field-flow fractionation (HF5) coupled with UV-vis absorption spectroscopy and inductively coupled plasma optical emission spectroscopy. HF5 was directly applied on the incubated samples in pure water (PW), simulated natural water (SNW), and simulated lung fluid (SLF) due to its efficient in-line filtration and excellent fractionation resolution. Firstly, the potential of the proposed method (under optimized conditions) for size characterization was assessed against commercial silica microparticles, and results in good agreement with manufacturer and scanning electron microscopy values were obtained. The accuracy of quantification of soluble Zn in various media was then validated using a standard reference material in terms of satisfactory recoveries compared with the reference values. For the real PM2.5 samples collected from different sites in Beijing, China, the soluble Zn percentages in PW, SNW, and SLF were within 15.4-16.7%, 10.6-12.7%, and 43.1-46.9%, respectively, with the amount of particles smaller than ~10 nm released from PM2.5 increasing in the order of SNW < PW < SLF. The proposed HF5-based method provides a powerful and efficient tool for the quantification of soluble transition metal fractions and size characterization of residual particles with reduced analysis times, thus possessing great promise in real-time tracking of the transformation of PM2.5 in environmental and physiological media and in risk assessment.

8.
Environ Sci Technol ; 53(23): 13802-13811, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31697066

ABSTRACT

Freezing is essential in the light-mediated transformation of organic pollutants. However, the effects of the freezing process on the reduction of Ag+ by natural organic matter (NOM) remains unclear, causing significant uncertainties in the natural formation of silver nanoparticles (AgNPs). This study investigated the sunlight-induced reduction of Ag+ by NOM under natural or controlled freezing processes. Natural (outdoor) freezing experiments demonstrated intense aggregation and precipitation of AgNPs in three aqueous media, including a NOM solution and two river water samples, under natural sunlight irradiation. Indoor experiments under simulated sunlight irradiation and controlled freezing processes showed that freezing at -20 °C and repeated freeze-thaw cycles (-20 to 4 °C) drastically accelerated the formation and growth of AgNPs compared to maintenance at 4 °C. Finally, under the natural freezing process, commercial AgNPs were found to influence the redox reduction of Ag+ probably through a reduction in dissolution rates and homoaggregation with AgNPs newly formed in the river water samples. Additionally, the enhancement effect of freezing on AgNP formation was confirmed in the presence of Ag+ and AgNPs both at environmentally relevant concentration levels, especially upon light irradiation. This work emphasizes the importance of freezing processes on the natural formation of AgNPs.


Subject(s)
Metal Nanoparticles , Silver , Freezing , Oxidation-Reduction , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...