Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1536, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378620

ABSTRACT

The development of highly efficient active integrated photonic circuits is crucial for advancing information and computing science. Lead halide perovskite semiconductors, with their exceptional optoelectronic properties, offer a promising platform for such devices. In this study, active micro multifunctional photonic devices were fabricated on monocrystalline CsPbBr3 perovskite thin films using a top-down etching technique with focused ion beams. The etched microwire exhibited a high-quality micro laser that could serve as a light source for integrated devices, facilitating angle-dependent effective propagation between coupled perovskite-microwire waveguides. Employing this strategy, multiple perovskite-based active integrated photonic devices were realized for the first time. These devices included a micro beam splitter that coherently separated lasing signals, an X-coupler performing transfer matrix functions with two distinguishable light sources, and a Mach-Zehnder interferometer manipulating the splitting and coalescence of coherent light beams. These results provide a proof-of-concept for active integrated functionalized photonic devices based on perovskite semiconductors, representing a promising avenue for practical applications in integrated optical chips.

2.
RSC Adv ; 13(22): 14841-14848, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37197184

ABSTRACT

Tungsten disulfide (WS2) is promising for potential applications in transistors and gas sensors due to its high mobility and high adsorption of gas molecules onto edge sites. This work comprehensively studied the deposition temperature, growth mechanism, annealing conditions, and Nb doping of WS2 to prepare high-quality wafer-scale N- and P-type WS2 films by atomic layer deposition (ALD). It shows that the deposition and annealing temperature greatly influence the electronic properties and crystallinity of WS2, and insufficient annealing will seriously reduce the switch ratio and on-state current of the field effect transistors (FETs). Besides, the morphologies and carrier types of WS2 films can be controlled by adjusting the processes of ALD. The obtained WS2 films and the films with vertical structures were used to fabricate FETs and gas sensors, respectively. Among them, the Ion/Ioff ratio of N- and P-type WS2 FETs is 105 and 102, respectively, and the response of N- and P-type gas sensors is 14% and 42% under 50 ppm NH3 at room temperature, respectively. We have successfully demonstrated a controllable ALD process to modify the morphology and doping behavior of WS2 films with various device functionalities based on acquisitive characteristics.

3.
ACS Appl Mater Interfaces ; 15(20): 24606-24613, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184060

ABSTRACT

We report the large-scale transfer process for monocrystalline CsPbBr3 thin films prepared by chemical vapor deposition (CVD) with excellent optical properties and stability. The transfer process is robust, simple, and effective, in which CsPbBr3 thin films could be transferred to several substrates and effectively avoid chemical or physical fabrication processes to damage the perovskite surface. Moreover, the transfer process endows CsPbBr3 and substrates with atomically clean and electronically flat interfaces. We utilize this transfer process to realize several optoelectronic devices, including a photonic laser with a threshold of 61 µJ/cm2, a photodetector with a responsivity of 2.4 A/W, and a transistor with a hole mobility of 11.47 cm2 V-1 s-1. High device performances mainly originate from low defects of high-quality single-crystal perovskite and seamless contact between CsPbBr3 and target substrates. The large-scale nondestructive transfer process provides promising opportunities for optoelectronic applications based on monocrystalline perovskites.

4.
Nanoscale ; 15(21): 9432-9439, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37158269

ABSTRACT

Wide band gap (WBG) alkaline-earth stannate transparent oxide semiconductors (TOSs) have attracted increasing attention in recent years for their high carrier mobility and outstanding optoelectronic properties, and have been applied widely in various devices, such as flat-panel displays. Most alkaline-earth stannates are grown by molecular beam epitaxy (MBE); there are some intractable issues with the tin source including the volatility with SnO and Sn sources and the decomposition of the SnO2 source. In contrast, atomic layer deposition (ALD) serves as an ideal technique for the growth of complex stannate perovskites with precise stoichiometry control and tunable thickness at the atomic scale. Herein, we report the La-SrSnO3/BaTiO3 perovskite heterostructure heterogeneously integrated on Si (001), which uses ALD-grown La-doped SrSnO3 (LSSO) as a channel material and MBE-grown BaTiO3 (BTO) as a dielectric material. The reflective high-energy electron diffraction and X-ray diffraction results indicate the crystallinity of each epitaxial layer with a full width at half maximum (FWHM) of 0.62°. In situ X-ray photoelectron spectroscopy results confirm that there was no Sn0 state in ALD-deposited LSSO. Besides, we report a strategy for the post-treatment of LSSO/BTO perovskite heterostructures by controlling the oxygen annealing temperature and time, with a maximum oxide capacitance Cox of 0.31 µF cm-2 and a minimum low-frequency dispersion for the devices with 7 h oxygen annealing at 400 °C. The enhancement of capacitance properties is primarily attributed to a decrease of oxygen vacancies in the films and interface defects in the heterostructure interfaces during an additional ex situ excess oxygen annealing. This work expands current optimization methods for reducing defects in epitaxial LSSO/BTO perovskite heterostructures and shows that excess oxygen annealing is a powerful tool for enhancing the capacitance properties of LSSO/BTO heterostructures.

5.
Research (Wash D C) ; 2021: 9862483, 2021.
Article in English | MEDLINE | ID: mdl-34957405

ABSTRACT

Wafer-scale synthesis of p-type TMD films is critical for its commercialization in next-generation electro/optoelectronics. In this work, wafer-scale intrinsic n-type WS2 films and in situ Nb-doped p-type WS2 films were synthesized through atomic layer deposition (ALD) on 8-inch α-Al2O3/Si wafers, 2-inch sapphire, and 1 cm2 GaN substrate pieces. The Nb doping concentration was precisely controlled by altering cycle number of Nb precursor and activated by postannealing. WS2 n-FETs and Nb-doped p-FETs with different Nb concentrations have been fabricated using CMOS-compatible processes. X-ray photoelectron spectroscopy, Raman spectroscopy, and Hall measurements confirmed the effective substitutional doping with Nb. The on/off ratio and electron mobility of WS2 n-FET are as high as 105 and 6.85 cm2 V-1 s-1, respectively. In WS2 p-FET with 15-cycle Nb doping, the on/off ratio and hole mobility are 10 and 0.016 cm2 V-1 s-1, respectively. The p-n structure based on n- and p- type WS2 films was proved with a 104 rectifying ratio. The realization of controllable in situ Nb-doped WS2 films paved a way for fabricating wafer-scale complementary WS2 FETs.

6.
ACS Appl Mater Interfaces ; 13(36): 43115-43122, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34473473

ABSTRACT

Transition-metal dichalcogenides (TMDs) have attracted intense research interest for a broad range of device applications. Atomic layer deposition (ALD), a CMOS compatible technique, can enable the preparation of high-quality TMD films on 8 to 12 in. wafers for large-scale circuit integration. However, the ALD growth mechanisms are still not fully understood. In this work, we systematically investigated the growth mechanisms for WS2 and found them to be strongly affected by nucleation density and film thickness. Transmission electron microscope imaging reveals the coexistence and competition of lateral and vertical growth mechanisms at different growth stages, and the critical thicknesses for each mechanism are obtained. The in-plane lateral growth mode dominates when the film thickness remains less than 5.6 nm (8 layers), while the vertical growth mode dominates when the thickness is greater than 20 nm. From the resulting understanding of these growth mechanisms, the conditions for film deposition were optimized and a maximum grain size of 108 nm was achieved. WS2-based field-effect transistors were fabricated with electron mobility and on/off current ratio up to 3.21 cm2 V-1 s-1 and 105, respectively. Particularly, this work proves the capability of synthesis of TMD films in a wafer scale with excellent controllability of thickness and morphology, enabling many potential applications other than transistors, such as nanowire- or nanosheet-based supercapacitors, batteries, sensors, and catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...