Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.025
Filter
1.
J Hum Genet ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147824

ABSTRACT

Age at menarche (AAM) is a sign of puberty of females. It is a heritable trait associated with various adult diseases. However, the genetic mechanism that determines AAM and links it to disease risk is poorly understood. Aiming to uncover the genetic basis for AAM, we conducted a joint association study in up to 438,089 women from 3 genome-wide association studies of European and East Asian ancestries. A series of bioinformatical analyses and causal inference were then followed to explore in-depth annotations at the associated loci and infer the causal relationship between AAM and other complex traits/diseases. This largest meta-analysis identified a total of 21 novel AAM associated loci at the genome wide significance level (P < 5.0 × 10-8), 4 of which were European ancestry-specific loci. Functional annotations prioritized 33 candidate genes at newly identified loci. Significant genetic correlations were observed between AAM and 67 complex traits. Further causal inference demonstrated the effects of AAM on 13 traits, including forced vital capacity (FVC), high blood pressure, age at first live birth, etc, indicating that earlier AAM causes lower FVC, worse lung function, hypertension and earlier age at first (last) live birth. Enrichment analysis identified 5 enriched tissues, including the hypothalamus middle, hypothalamo hypophyseal system, neurosecretory systems, hypothalamus and retina. Our findings may provide useful insights that elucidate the mechanisms determining AAM and the genetic interplay between AAM and some traits of women.

2.
Food Sci Nutr ; 12(8): 5587-5604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139959

ABSTRACT

This study aims to elucidate the detailed metabolic implications of varying monacolin K levels and sterilization methods on Monascus-fermented rice products (MFRPs), acclaimed for their health benefits and monacolin K content. Advanced metabolite profiling of various MFRP variants was conducted using ultrahigh-performance liquid chromatography coupled with tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS). Statistical analysis encompassed t-tests, ANOVA, and multivariate techniques including PCA, PLS-DA, and OPLS-DA. Notable variations in metabolites were observed across MFRPs with differing monacolin K levels, particularly in variants such as MR1-S, MR1.5-S, MR2-S, and MR3-S. Among the 524 identified metabolites, significant shifts were noted in organic acids, derivatives, lipids, nucleosides, and organic oxygen compounds. The study also uncovered distinct metabolic changes resulting from different sterilization methods and the use of highland barley as a fermentation substitute for rice. Pathway analysis shed light on affected metabolic pathways, including those involved in longevity regulation, cGMP-PKG signaling, and the biosynthesis of unsaturated fatty acids. The research provides critical insights into the complex metabolic networks of MFRPs, underscoring the impact of fermentation substrates and conditions on monacolin K levels and their health implications. This study not only guides the nutritional optimization of MFRPs but also emphasizes the strategic importance of substrate choice and sterilization techniques in enhancing the nutritional and medicinal value of these functional foods.

3.
Plant Sci ; : 112230, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154894

ABSTRACT

Plant vegetative organs present great potential for lipid storage, with tubers of Cyperus esculentus as a unique example. To investigate the genome and transcriptomic features of C. esculentus and related species, we sequenced and assembled the C. esculentus genome at the contig level. Through a comparative study of high-quality transcriptomes across 36 tissues from high-oil and intermediate-oil C. esculentus and low-oil Cyperus rotundus, we identified potential genes and regulatory networks related to tuber oil accumulation. First, we identified tuber-specific genes in two C. esculentus cultivars. Second, genes involved in fatty acid (FA) biosynthesis, triacylglycerol synthesis, and TAG packaging presented increased activity in the later stages of tuber development. Notably, tubers with high oil contents presented higher levels of these genes than those with intermediate oil contents did, whereas tubers with low oil contents presented minimal gene expression. Notably, a large fragment of the FA biosynthesis rate-limiting enzyme-encoding gene BCCP1 was missing from the C. rotundus transcript, which might be responsible for blocking FA biosynthesis in its tubers. WGCNA pinpointed a gene module linked to tuber oil accumulation, with a coexpression network involving the transcription factors WRI1, MYB4, and bHLH68. The ethylene-related genes in this module suggest a role for ethylene signaling in oil accumulation, which is supported by the finding that ethylene (ETH) treatment increases the oil content in C. esculentus tubers. This study identified potential genes and networks associated with tuber oil accumulation in C. esculentus, highlighting the role of specific genes, transcription factors, and ethylene signaling in this process.

4.
Int J Cosmet Sci ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119798

ABSTRACT

OBJECTIVE: The objective is to develop a natural and stable anti-oxidative stress and anti-ageing ingredient. In this study, we evaluated the changes in white tea leaves fermented with Eurotium cristatum PLT-PE and Saccharomyces boulardii PLT-HZ and their efficacy against skin oxidative stress. METHODS: We employed untargeted metabolomics technology to analyse the differential metabolites between tea extract (TE) and fermented tea extract (FTE). In vitro, using H2O2-induced HaCaT cells, we evaluated cell vitality, ROS, and inflammatory factors (TNF-α, IL-1ß, and IL-6). Additionally, we verified the effects on the extracellular matrix and nuclear DNA using fibroblasts or reconstructed skin models. We measured skin hydration, elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio in volunteers after using an emulsion containing 3% FTE for 28 and 56 days. RESULTS: Targeted metabolomics analysis of white tea leaves yielded more than 20 differential metabolites with antioxidant and anti-inflammatory activities, including amino acids, polypeptides, quercetin, and liquiritin post-fermentation. FTE, compared to TE, can significantly reduce reactive oxygen species (ROS) and protect against oxidative stress-induced skin damage in H2O2-induced HaCaT cells. FTE can inhibit H2O2-induced collagen degradation by suppressing the MAPK/c-Jun signalling pathway and can also mitigate the reactive oxygen species damage to nuclear DNA. Clinical studies showed that the volunteers' stratum corneum water content, skin elasticity, wrinkle area, wrinkle area ratio, erythema area, and erythema area ratio significantly improved from the baseline after 28 and 56 days of FTE use. CONCLUSION: This study contributes to the growing body of literature supporting the protective effects against skin oxidative stress and ageing from fermented plant extracts. Moreover, our findings might inspire multidisciplinary efforts to investigate new fermentation techniques that could produce even more potent anti-ageing solutions.


OBJECTIF: L'objectif est de développer un ingrédient naturel et stable contre le stress oxydatif et anti­âge. Dans cette étude, nous avons évalué les modifications dans les feuilles de thé blanc fermentées avec la PLT­PE Eurotium cristatum et la PLT­HZ Saccharomyces boulardii et leur efficacité contre le stress oxydatif cutané. MÉTHODES: Nous avons utilisé une technologie de métabolomique non ciblée pour analyser les métabolites différentiels entre l'extrait de thé (ET) et l'extrait de thé fermenté (ETF). In vitro, à l'aide de cellules HaCaT induites par l'H2O2, nous avons évalué la vitalité cellulaire, les ERO et les facteurs inflammatoires (TNF­α, IL­1ß, and IL­6). Nous avons également vérifié les effets sur la matrice extracellulaire et l'ADN nucléaire à l'aide de fibroblastes ou de modèles cutanés reconstruits. Nous avons mesuré l'hydratation de la peau, l'élasticité, la surface de rides, le rapport des surfaces de rides, la surface d'érythème, et le rapport des surfaces d'érythème chez des volontaires ayant utilisé une émulsion contenant 3% d'ETF pendant 28 et 56 jours. RÉSULTATS: L'analyse métabolomique ciblée des feuilles de thé blanc a révélé plus de 20 métabolites différentiels ayant des activités antioxydantes et anti­inflammatoires, notamment des acides aminés, des polypeptides, de la quercétine et de la liquiritine après fermentation. Par rapport à l'ET, l'ETF peut réduire significativement les espèces réactives de l'oxygène (ERO) et protéger contre les lésions cutanées induites par le stress oxydatif dans les cellules HaCaT induites par l'H2O2. L'ETF peut inhiber la dégradation du collagène induite par l'H2O2 en supprimant la voie de signalization MAPK/c­Jun et peut également atténuer les dommages causés par les espèces réactives de l'oxygène à l'ADN nucléaire. Les études cliniques ont montré que la teneur en eau de la couche cornée des volontaires, l'élasticité de la peau, la surface de rides, le rapport des surfaces de rides, la surface d'érythème et le rapport des surfaces d'érythème se sont significativement améliorés par rapport à la référence après 28 et 56 jours d'utilisation d'ETF. CONCLUSION: Cette étude contribue au corpus croissant de littérature soutenant les effets protecteurs des extraits de plantes fermentées contre le stress oxydatif cutané et le vieillissement. En outre, nos résultats pourraient inspirer des efforts pluridisciplinaires pour étudier de nouvelles techniques de fermentation susceptibles de produire des solutions anti­âge encore plus puissantes.

5.
J Am Chem Soc ; 146(32): 22180-22192, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087925

ABSTRACT

Metal nanoclusters (NCs) hold great promise for expressing multipeak emission based on their well-defined total structure with diverse luminescent centers. Herein, we report the surface motif-dictated triple phosphorescence of Au NCs with dynamic color turning. The deprotonation-triggered isomerization of terminal thiouracils can evolve into a mutual transformation among their hierarchical motifs, thus serving a multipeak-emission expression with good tailoring. More importantly, the underlying electron transfer is thoroughly identified by excluding the radiative and nonradiative energy transfer, where electrons flow from the first phosphorescent state to the last two ones. The findings shed light on finely tailing motifs at the molecular level to motivate studies on customizable luminescence characteristics of metal NCs.

6.
Phytochemistry ; 228: 114229, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127395

ABSTRACT

Scoparodane C (1), a diterpenoid with a rare 3,4-seco-3-nor-2,11-epoxy-ent-clerodane scaffold, was obtained from the aerial parts of Isodon scoparius, along with isocopariusines A-E (2-6), five ent-clerodanoids featuring a 5/6-fused ring system, and isocopariusines F-H (7-9), three common ent-clerodanoids. The structures of these previously undescribed compounds were established by a combination of spectroscopic analysis, X-ray diffraction, chemical derivatization, and quantum chemical calculation. Remarkably, isocopariusine B (3) showed strong resistance reversal activity against fluconazole-resistant Candida albicans.

7.
J Food Sci ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136980

ABSTRACT

The heavy metal content in edible oils is intricately associated with their suitability for human consumption. In this study, standard soybean oil was used as a sample to quantify the specified concentration of heavy metals using microwave sensing technique. In addition, an attention-based deep residual neural network model was developed as an alternative to traditional modeling methods for predicting heavy metals in edible oils. In the process of microwave data processing, this work continued to discuss the impact of depth on convolutional neural networks. The results demonstrated that the proposed attention-based residual network model outperforms all other deep learning models in all metrics. The performance of this model was characterized by a coefficient of determination (R2) of 0.9605, a relative prediction deviation (RPD) of 5.0479, and a root mean square error (RMSE) of 3.1654 mg/kg. The research findings indicate that the combination of microwave detection technology and chemometrics holds significant potential for assessing heavy metal levels in edible oils.

8.
Food Funct ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150321

ABSTRACT

The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.

9.
Oncologist ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162585

ABSTRACT

BACKGROUND: A minority subset of immunotherapy patients manifests hyperprogressive disease (HPD), with the disparity in melanoma subtypes yet to be reported. This study aimed to delineate the proportion and prognosis of HPD in patients receiving anti-PD-1 monotherapy and to identify patient with HPD clinical characteristics across melanoma subtypes to inform clinical decision making. METHODS: Utilizing 4 established HPD definitions, the incidence of HPD in patients with advanced melanoma on anti-PD-1 monotherapy was determined. The incidence rates and prognostic abilities of various HPD definitions were compared to elect the most effective one. This facilitated a comparative analysis of subtypes and clinical features between patients with HPD and traditional progression. RESULTS: A total of 262 patients with advanced melanoma treated with anti-PD-1 monotherapy from 5 prospectively registered clinical trials were included in the study. The objective response rate (ORR) and disease control rate (DCR) was 21% and 58%, respectively, with 42% showcasing progression disease. The HPD incidences by 4 definitions were 13.2%, 16.8%, 10.8%, and 28.2%. All definitions effectively segregated HPD patients, with significantly poorer outcome than other progressive patients. The Delta TGR > 100 definition was the most indicative of a reduced overall survival, corroborated by the highest hazard ratio and statistical significance. The number of metastatic organs over 2 is a risk factor for HPD (OR = 4.18, P = .0103). Mucosal melanoma was the HPD prevalent subtype (OR = 3.13, P = .0489) in multivariable analysis, which is also indicated by RECIST criteria (P = .005). CONCLUSION: A delta TGR exceeding 100 best identified HPD patients in the advanced melanoma population treated with anti-PD-1 monotherapy. Hyperprogression was notably prevalent in mucosal melanoma patients with multiple metastatic organs. Caution against HPD is warranted when applying anti-PD-1 monotherapy in mucosal subtype.

10.
Sci Total Environ ; 948: 174675, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39002593

ABSTRACT

Pesticide residues in agricultural products are serious threat to people's health. Real-time monitoring of pesticides residues in the environment and agricultural products posed challenges to sustainable methods with high analytical performance for pesticide detection. Herein, waste PVC/coal fly ash (the mass ratio of PVC and coal fly ash was 4:1) was dechlorinated in subcritical water at low temperature to achieve nearly 100 % dechlorination of PVC and obtain carbon-based composite materials (CM-Fe/Al/Si-dPVC) with strong sening activity. For CM-Fe/Al/Si-dPVC, CFe bonding resulted in strong electron migration, and nano/µm SiO2 and Al2O3 doping in the layered polyene C matrix provided large specific surface area, and silicon hydroxyl created good heterogeneous catalytic interfaces. CM-Fe/Al/Si-dPVC could strongly trigger luminol chemiluminescence (CL) reaction and produce intense CL signals. Neonicotinoid pesticides (acetamiprid and imidacloprid) bonded with CM-Fe/Al/Si-dPVC through coordination chelation and hydrogen bonding, which shielded the catalytic active site and increased the Fermi level of system, thus quenching CL reaction. Inspired by these, a cheap CL assay was constructed for detecting neonicotinoids combinations of acetamiprid and imidacloprid (NICs). The detection limits of NICs were 0.7 ng/L. Satisfactory recoveries were obtained for real agricultural products and environmental samples. The results of life cycle evaluation (LCA) revealed that the strategy had significantly small global warming potential (GWP). This work presented a sustainable method with environmental benefits for the detection of neonicotinoids, and also opened up new way for the recycling of organic solid wastes.

11.
J Appl Clin Med Phys ; 25(8): e14450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031891

ABSTRACT

The purpose of this study is to develop an electronic portal imaging device-based multi-leaf collimator calibration procedure using log files. Picket fence fields with 2-14 mm nominal strip widths were performed and normalized by open field. Normalized pixel intensity profiles along the direction of leaf motion for each leaf pair were taken. Three independent algorithms and an integration method derived from them were developed according to the valley value, valley area, full-width half-maximum (FWHM) of the profile, and the abutment width of the leaf pairs obtained from the log files. Three data processing schemes (Scheme A, Scheme B, and Scheme C) were performed based on different data processing methods. To test the usefulness and robustness of the algorithm, the known leaf position errors along the direction of perpendicular leaf motion via the treatment planning system were introduced in the picket fence field with nominal 5, 8, and 11 mm. Algorithm tests were performed every 2 weeks over 4 months. According to the log files, about 17.628% and 1.060% of the leaves had position errors beyond ± 0.1 and ± 0.2 mm, respectively. The absolute position errors of the algorithm tests for different data schemes were 0.062 ± 0.067 (Scheme A), 0.041 ± 0.045 (Scheme B), and 0.037 ± 0.043 (Scheme C). The absolute position errors of the algorithms developed by Scheme C were 0.054 ± 0.063 (valley depth method), 0.040 ± 0.038 (valley area method), 0.031 ± 0.031 (FWHM method), and 0.021 ± 0.024 (integrated method). For the efficiency and robustness test of the algorithm, the absolute position errors of the integration method of Scheme C were 0.020 ± 0.024 (5 mm), 0.024 ± 0.026 (8 mm), and 0.018 ± 0.024 (11 mm). Different data processing schemes could affect the accuracy of the developed algorithms. The integration method could integrate the benefits of each algorithm, which improved the level of robustness and accuracy of the algorithm. The integration method can perform multi-leaf collimator (MLC) quality assurance with an accuracy of 0.1 mm. This method is simple, effective, robust, quantitative, and can detect a wide range of MLC leaf position errors.


Subject(s)
Algorithms , Particle Accelerators , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy, Intensity-Modulated/methods , Quality Assurance, Health Care/standards , Particle Accelerators/instrumentation , Calibration , Neoplasms/radiotherapy
12.
J Immunol ; 213(5): 559-566, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38975727

ABSTRACT

Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.


Subject(s)
Forkhead Transcription Factors , Genetic Diseases, X-Linked , Genetic Therapy , Germ-Line Mutation , Interleukin-10 , T-Lymphocytes, Regulatory , Animals , Forkhead Transcription Factors/genetics , Mice , Interleukin-10/genetics , Interleukin-10/immunology , Genetic Therapy/methods , T-Lymphocytes, Regulatory/immunology , Genetic Diseases, X-Linked/therapy , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/genetics , Interleukins/immunology , Interleukins/genetics , Diarrhea/genetics , Diarrhea/therapy , Diarrhea/immunology , Intestinal Diseases/immunology , Intestinal Diseases/genetics , Intestinal Diseases/therapy , Dependovirus/genetics , Mice, Inbred C57BL , Immune System Diseases/immunology , Immune System Diseases/therapy , Immune System Diseases/genetics , Immune System Diseases/congenital , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/congenital , Mice, Knockout , Lymphocyte Activation/immunology , Humans , Interleukin-27/genetics
13.
Medicine (Baltimore) ; 103(29): e38844, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029005

ABSTRACT

The aim of this study is to assess alterations in heart function and structure in patients diagnosed with non-ST segment elevation acute myocardial infarction (NSTEAMI), unstable angina (UA), and stable angina (SA) 1 year after undergoing off-pump coronary artery bypass grafting (OPCABG) performed without extracorporeal circulation. A total of 182 patients who underwent OPCABG were included and classified into 3 groups based on their preoperative diagnosis: the NSTEAMI group (n = 68), the UA group (n = 64), and the SA group (n = 50). Cardiac ultrasonography data were collected for all groups both preoperatively and 1 year postoperatively. Clinical data were subjected to statistical analysis. In the NSTEAMI group, postoperative observations revealed increases in left ventricular stroke volume and left ventricular end-systolic diameter, along with reductions in left ventricular end-diastolic volume (LVEDV) and left ventricular end-diastolic diameter (LVEDD) 1-year post-surgery. The UA group demonstrated decreases in LVEDV and LVEDD 1-year post-surgery. Similarly, the SA group exhibited an increase in left ventricular ejection fraction (LVEF) and reductions in LVEDV and LVEDD 1-year post-surgery. Comparative analysis of cardiac ultrasonography data revealed that the NSTEAMI group displayed significantly lower left ventricular stroke volume and notably higher left ventricular end-systolic diameter and volume compared to the UA and SA groups 1-year post-surgery. Furthermore, the SA group exhibited significantly elevated LVEF compared to the UA and NSTEAMI groups 1-year post-surgery. Cardiac ultrasonography findings indicate that all 3 groups exhibited improvements in cardiac function and left ventricular structure 1-year post-surgery. However, the NSTEAMI group demonstrated more substantial improvements in comparison to the UA and SA groups.


Subject(s)
Coronary Artery Bypass, Off-Pump , Humans , Male , Female , Middle Aged , Coronary Artery Bypass, Off-Pump/methods , Aged , Stroke Volume/physiology , Ventricular Function, Left/physiology , Echocardiography/methods , Angina, Unstable/surgery , Angina, Unstable/physiopathology , Angina, Unstable/diagnostic imaging , Angina, Stable/surgery , Angina, Stable/physiopathology , Angina, Stable/diagnostic imaging , Non-ST Elevated Myocardial Infarction/surgery , Non-ST Elevated Myocardial Infarction/physiopathology , Non-ST Elevated Myocardial Infarction/diagnostic imaging , Coronary Artery Bypass/methods
14.
Adv Mater ; : e2403257, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030786

ABSTRACT

The buried interface properties of the perovskite solar cells (PSCs) play a crucial role in the power conversion efficiency (PCE) and operational stability. The metal-oxide/perovskite heterogeneous interfaces are highly defective and cause serious ion migration. However, the buried and unexposed bottom interface and simultaneous stabilization of grain boundaries receive less attention and effective solutions. To tackle this problem, a solid-liquid strategy is employed by introducing oily-additive allicin at the buried interface to passivate the shallow (VI and Vo) and deep traps (VPb and PbI). Interestingly, oily status allicin fills the pinholes at the heterointerface and wraps the perovskite grains, suppressing the ion migration during the photoaging process. As a result, an outstanding PCE of 25.07% is achieved with a remarkable fill factor (FF) of 84.03%. The modified devices can maintain 94.51% of the original PCE after light soaking under 1-sun illumination for 1000 h. This work demonstrates a buried interface modification method that employs an eco-friendly additive, which helps promote the development of PSCs with high performance and stability.

15.
Int Urol Nephrol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069601

ABSTRACT

BACKGROUND: Dendritic cells (DCs) have been speculated to be involved in the pathogenesis of glomerular diseases. However, the numbers and distribution of DC subsets in the kidneys of patients with crescentic glomerulonephritis (CrGN) have not been clearly elucidated. METHODS: A total of 26 patients with biopsy-proven CrGN were enrolled. Indirect immunofluorescence staining was used to quantify DC subsets in renal specimens. Double staining of HLA with CD11C, BDCA2 and CD209 respectively was performed to detect DC subsets. The correlation between DC subsets infiltrated in the kidney and clinical and pathological parameters was investigated. RESULTS: DC subsets were predominantly present in the kidney interstitium, particularly in the peri-glomerular area. The numbers of CD11C+DCs, BDCA2+DCs and CD209+DCs increased in the patients with CrGN and varied among different types of CrGN. Though significant correlation between DC subsets and the percentage of crescents had not been identified, a notable increase in the number of CD11C+DCs were observed with the chronic development of crescents. Furthermore, patients with severe tubulointerstitial injury exhibited significantly more infiltrations of CD11C+DCs, BDCA2+DCs and CD209+DCs. Moreover, the numbers of CD11C+DCs and BDCA2+DCs were found to correlate with the level of serum C3. CONCLUSIONS: Patients with CrGN showed increased kidney infiltration of DC subsets, primarily localized in the renal interstitium and peri-glomerular region. The correlation between DC subsets and fibrosis of crescent and severe tubulointerstitial injury implied a potential involvement of DCs in the development of CrGN.

16.
Sci Total Environ ; 947: 174734, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39002589

ABSTRACT

The ongoing and progressive evolution of antibiotic resistance presents escalating challenges for the clinical management and prevention of bacterial infections. Understanding the makeup of resistance genomes and accurately quantifying the current abundance of antibiotic resistance genes (ARGs) are crucial for assessing the threat of antimicrobial resistance (AMR) to public health. This comprehensive study investigated the distribution and diversity of bacterial community composition, ARGs, and virulence factors (VFs) across human, chicken, pig fecal, and soil microbiomes in various provinces of China. As a result, multidrug resistance was identified across all samples. Core ARGs primarily related to multidrug, MLS (Macrolides-Lincosamide-Streptogramins), and tetracycline resistance were characterized. A significant correlation between ARGs and bacterial taxa was observed, especially in soil samples. Probiotic strains such as Lactobacillus harbored ARGs, potentially contributing to the dissemination of antibiotic resistance. We screened subsets of ARGs from samples from different sources as indicators to assess the level of ARGs contamination in samples, with high accuracy. These results underline the complex relationship between microbial communities, resistance mechanisms, and environmental factors, emphasizing the importance of continued research and monitoring to better understand these dynamics.


Subject(s)
Chickens , Drug Resistance, Microbial , Feces , Microbiota , Soil Microbiology , Animals , Feces/microbiology , Chickens/microbiology , Swine , Humans , Microbiota/drug effects , Drug Resistance, Microbial/genetics , China , Anti-Bacterial Agents/pharmacology , Metagenomics , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Bacterial/genetics
17.
Clin Nucl Med ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010319

ABSTRACT

ABSTRACT: We present 68Ga-FAPI PET/CT findings of benign carotid body tumor in a 33-year-old woman. Benign carotid body tumor demonstrated intense tracer uptakes on 68Ga-FAPI PET/CT. Our case suggests that benign carotid body tumors should be considered in the differential diagnosis of neck mass with elevated 68Ga-FAPI activity.

18.
iScience ; 27(7): 110188, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989468

ABSTRACT

Hypoxia promotes tumorigenesis and lactate accumulation in esophageal squamous cell carcinoma (ESCC). Lactate can induce histone lysine lactylation (Kla, a recently identified histone marks) to regulate transcription. However, the functional consequence of histone Kla under hypoxia in ESCC remains to be explored. Here, we reveal that hypoxia facilitates histone H3K9la to enhance LAMC2 transcription for proliferation of ESCC. We found that global level of Kla was elevated under hypoxia, and thus identified the landscape of histone Kla in ESCC by quantitative proteomics. Furthermore, we show a significant increase of H3K9la level induced by hypoxia. Next, MNase ChIP-seq and RNA-seq analysis suggest that H3K9la is enriched at the promoter of cell junction genes. Finally, we demonstrate that the histone H3K9la facilitates the expression of LAMC2 for ESCC invasion by in vivo and in vitro experiments. Briefly, our study reveals a vital role of histone Kla triggered by hypoxia in cancer.

19.
J Colloid Interface Sci ; 675: 1069-1079, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018634

ABSTRACT

Efficient charge transfer and effective separation of photo-generated charge carriers are crucial factors in photocatalysis. In this study, we present the design of a composite photocatalyst consisting of cobalt and bismuth (CoBi) bimetallic nanoparticles incorporated into a honeycomb nitrogen-doped graphitic carbon (N-GC) matrix. The ultra-thin porous N-GC matrix exhibits excellent electrical conductivity, a high number of active sites, and enables efficient absorption and multiple reflection of incident light. The CoBi bimetal-N-GC interface establishes a self-driven charge transport channel that effectively suppresses the backflow of photogenerated electrons, leading to prolonged separation of photo-generated carriers and a significant improvement in photocatalytic activity. The CoBi@N-GC catalyst showcases outstanding performance, producing CH4 and CO at rates of 36.07 µmol·g-1·h-1 and 44.09 µmol·g-1·h-1 respectively, confirming its superior photocatalytic capabilities.

20.
Proteins ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023292

ABSTRACT

Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.

SELECTION OF CITATIONS
SEARCH DETAIL