Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 180: 33-43, 2023 07.
Article in English | MEDLINE | ID: mdl-37149124

ABSTRACT

ß-adrenergic (ß-AR) signaling is essential for the adaptation of the heart to exercise and stress. Chronic stress leads to the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase D (PKD). Unlike CaMKII, the effects of PKD on excitation-contraction coupling (ECC) remain unclear. To elucidate the mechanisms of PKD-dependent ECC regulation, we used hearts from cardiac-specific PKD1 knockout (PKD1 cKO) mice and wild-type (WT) littermates. We measured calcium transients (CaT), Ca2+ sparks, contraction and L-type Ca2+ current in paced cardiomyocytes under acute ß-AR stimulation with isoproterenol (ISO; 100 nM). Sarcoplasmic reticulum (SR) Ca2+ load was assessed by rapid caffeine (10 mM) induced Ca2+ release. Expression and phosphorylation of ECC proteins phospholambam (PLB), troponin I (TnI), ryanodine receptor (RyR), sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated by western blotting. At baseline, CaT amplitude and decay tau, Ca2+ spark frequency, SR Ca2+ load, L-type Ca2+ current, contractility, and expression and phosphorylation of ECC protein were all similar in PKD1 cKO vs. WT. However, PKD1 cKO cardiomyocytes presented a diminished ISO response vs. WT with less increase in CaT amplitude, slower [Ca2+]i decline, lower Ca2+ spark rate and lower RyR phosphorylation, but with similar SR Ca2+ load, L-type Ca2+ current, contraction and phosphorylation of PLB and TnI. We infer that the presence of PKD1 allows full cardiomyocyte ß-adrenergic responsiveness by allowing optimal enhancement in SR Ca2+ uptake and RyR sensitivity, but not altering L-type Ca2+ current, TnI phosphorylation or contractile response. Further studies are necessary to elucidate the specific mechanisms by which PKD1 is regulating RyR sensitivity. We conclude that the presence of basal PKD1 activity in cardiac ventricular myocytes contributes to normal ß-adrenergic responses in Ca2+ handling.


Subject(s)
Adrenergic Agents , Adrenergic beta-Agonists , Myocytes, Cardiac , Protein Kinase C , Animals , Mice , Adrenergic Agents/pharmacology , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Agonists/metabolism , Calcium/metabolism , Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , Phosphorylation , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Protein Kinase C/genetics
2.
J Physiol ; 600(22): 4865-4879, 2022 11.
Article in English | MEDLINE | ID: mdl-36227145

ABSTRACT

Cardiac mechanical afterload induces an intrinsic autoregulatory increase in myocyte Ca2+ dynamics and contractility to enhance contraction (known as the Anrep effect or slow force response). Our prior work has implicated both nitric oxide (NO) produced by NO synthase 1 (NOS1) and calcium/calmodulin-dependent protein kinase II (CaMKII) activity as required mediators of this form of mechano-chemo-transduction. To test whether a single S-nitrosylation site on CaMKIIδ (Cys290) mediates enhanced sarcoplasmic reticulum Ca2+ leak and afterload-induced increases in sarcoplasmic reticulum (SR) Ca2+ uptake and release, we created a novel CRISPR-based CaMKIIδ knock-in (KI) mouse with a Cys to Ala mutation at C290. These CaMKIIδ-C290A-KI mice exhibited normal cardiac morphometry and function, as well as basal myocyte Ca2+ transients (CaTs) and ß-adrenergic responses. However, the NO donor S-nitrosoglutathione caused an acute increased Ca2+ spark frequency in wild-type (WT) myocytes that was absent in the CaMKIIδ-C290A-KI myocytes. Using our cell-in-gel system to exert multiaxial three-dimensional mechanical afterload on myocytes during contraction, we found that WT myocytes exhibited an afterload-induced increase in Ca2+ sparks and Ca2+ transient amplitude and rate of decline. These afterload-induced effects were prevented in both cardiac-specific CaMKIIδ knockout and point mutant CaMKIIδ-C290A-KI myocytes. We conclude that CaMKIIδ activation by S-nitrosylation at the C290 site is essential in mediating the intrinsic afterload-induced enhancement of myocyte SR Ca2+ uptake, release and Ca2+ transient amplitude (the Anrep effect). The data also indicate that NOS1 activation is upstream of S-nitrosylation at C290 of CaMKII, and that this molecular mechano-chemo-transduction pathway is beneficial in allowing the heart to increase contractility to limit the reduction in stroke volume when aortic pressure (afterload) is elevated. KEY POINTS: A novel CRISPR-based CaMKIIδ knock-in mouse was created in which kinase activation by S-nitrosylation at Cys290 (C290A) is prevented. How afterload affects Ca2+ signalling was measured in cardiac myocytes that were embedded in a hydrogel that imposes a three-dimensional afterload. This mechanical afterload induced an increase in Ca2+ transient amplitude and decay in wild-type myocytes, but not in cardiac-specific CaMKIIδ knockout or C290A knock-in myocytes. The CaMKIIδ-C290 S-nitrosylation site is essential for the afterload-induced enhancement of Ca2+ transient amplitude and Ca2+ sparks.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Sarcoplasmic Reticulum , Mice , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Sarcoplasmic Reticulum/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Calcium Signaling/physiology
3.
J Mol Cell Cardiol ; 161: 53-61, 2021 12.
Article in English | MEDLINE | ID: mdl-34371035

ABSTRACT

Persistent over-activation of CaMKII (Calcium/Calmodulin-dependent protein Kinase II) in the heart is implicated in arrhythmias, heart failure, pathological remodeling, and other cardiovascular diseases. Several post-translational modifications (PTMs)-including autophosphorylation, oxidation, S-nitrosylation, and O-GlcNAcylation-have been shown to trap CaMKII in an autonomously active state. The molecular mechanisms by which these PTMs regulate calmodulin (CaM) binding to CaMKIIδ-the primary cardiac isoform-has not been well-studied particularly in its native myocyte environment. Typically, CaMKII activates upon Ca-CaM binding during locally elevated [Ca]free and deactivates upon Ca-CaM dissociation when [Ca]free returns to basal levels. To assess the effects of CaMKIIδ PTMs on CaM binding, we developed a novel FRET (Förster resonance energy transfer) approach to directly measure CaM binding to and dissociation from CaMKIIδ in live cardiac myocytes. We demonstrate that autophosphorylation of CaMKIIδ increases affinity for CaM in its native environment and that this increase is dependent on [Ca]free. This leads to a 3-fold slowing of CaM dissociation from CaMKIIδ (time constant slows from ~0.5 to 1.5 s) when [Ca]free is reduced with physiological kinetics. Moreover, oxidation further slows CaM dissociation from CaMKIIδ T287D (phosphomimetic) upon rapid [Ca]free chelation and increases FRET between CaM and CaMKIIδ T287A (phosphoresistant). The CaM dissociation kinetics-measured here in myocytes-are similar to the interval between heartbeats, and integrative memory would be expected as a function of heart rate. Furthermore, the PTM-induced slowing of dissociation between beats would greatly promote persistent CaMKIIδ activity in the heart. Together, these findings suggest a significant role of PTM-induced changes in CaMKIIδ affinity for CaM and memory under physiological and pathophysiological processes in the heart.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Ventricles/cytology , Male , Phosphorylation , Protein Processing, Post-Translational , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...