Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0128700, 2015.
Article in English | MEDLINE | ID: mdl-26039067

ABSTRACT

Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.


Subject(s)
Adenosine Triphosphate/chemistry , Deoxyribonucleases, Type I Site-Specific/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Exodeoxyribonuclease V/chemistry , Protein Subunits/chemistry , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , DNA Cleavage , DNA, Bacterial , Deoxyribonucleases, Type I Site-Specific/genetics , Deoxyribonucleases, Type I Site-Specific/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/genetics , Exodeoxyribonuclease V/metabolism , Gene Expression , Models, Molecular , Mutation , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/metabolism , Protein Sorting Signals , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...