Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766091

ABSTRACT

Ewing sarcoma (ES) is an aggressive cancer diagnosed in adolescents and young adults. The fusion oncoprotein (EWSR1::FLI1) that drives Ewing sarcoma is known to downregulate TGFBR2 expression (part of the TGFß receptor). Because TGFBR2 is downregulated, it was thought that TGFß likely plays an inconsequential role in Ewing biology. However, the expression of TGFß in the Ewing tumor immune microenvironment (TIME) and functional impact of TGFß in the TIME remains largely unknown given the historical lack of immunocompetent preclinical models. Here, we use single-cell RNAseq analysis of human Ewing tumors to show that immune cells, such as NK cells, are the largest source of TGFß production in human Ewing tumors. We develop a humanized (immunocompetent) mouse model of ES and demonstrate distinct TME signatures and metastatic potential in these models as compared to tumors developed in immunodeficient mice. Using this humanized model, we study the effect of TGFß inhibition on the Ewing TME during radiation therapy, a treatment that both enhances TGFß activation and is used to treat aggressive ES. Utilizing a trivalent ligand TGFß TRAP to inhibit TGFß, we demonstrate that in combination with radiation, TGFß inhibition both increases ES immune cell infiltration and decreases lung metastatic burden in vivo . The culmination of these data demonstrates the value of humanized models to address immunobiologic preclinical questions in Ewing sarcoma and suggests TGFß inhibition as a promising intervention during radiation therapy to promote metastatic tumor control.

2.
Oncogene ; 43(14): 1007-1018, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361046

ABSTRACT

One-third of pediatric patients with osteosarcoma (OS) develop lung metastases (LM), which is the primary predictor of mortality. While current treatments of patients with localized bone disease have been successful in producing 5-year survival rates of 65-70%, patients with LM experience poor survival rates of only 19-30%. Unacceptably, this situation that has remained unchanged for 30 years. Thus, there is an urgent need to elucidate the mechanisms of metastatic spread in OS and to identify targetable molecular pathways that enable more effective treatments for patients with LM. We aimed to identify OS-specific gene alterations using RNA-sequencing of extremity and LM human tissues. Samples of extremity and LM tumors, including 4 matched sets, were obtained from patients with OS. Our data demonstrate aberrant regulation of the androgen receptor (AR) pathway in LM and predicts aldehyde dehydrogenase 1A1 (ALDH1A1) as a downstream target. Identification of AR pathway upregulation in human LM tissue samples may provide a target for novel therapeutics for patients with LM resistant to conventional chemotherapy.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Child , Aldehyde Dehydrogenase/metabolism , Receptors, Androgen/genetics , Lung Neoplasms/pathology , Osteosarcoma/pathology , Bone Neoplasms/pathology , RNA
3.
Clin Cancer Res ; 30(5): 934-936, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38113033

ABSTRACT

A detailed analysis of the Ewing sarcoma surfacesome has arrived. Robust expression of surface CDH11 and ENPP1 was identified. This "comprehensive catalog" of the Ewing surfacesome serves as a fresh roadmap to development of new therapeutic approaches, including immunotherapies and multi-modality therapeutic combinations, to target aggressive Ewing tumor subpopulations. See related article by Mooney et al., p. 1022.


Subject(s)
Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Sarcoma, Ewing/therapy , Immunotherapy
4.
Pediatrics ; 152(6)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37920939

ABSTRACT

Pediatric cancer outcomes have significantly improved, and yet this success is not spread equally across cancer types or patients. Disparities data in pediatric oncology highlight needed improvements in access to care, including clinical trials and advanced testing for all patients. For cancers such as brain tumors and sarcomas, continued advancement in understanding the biology of tumor heterogeneity is an essential step toward finding new therapeutic combinations to improve outcomes. Pediatric cancer survivors need access to emerging technologies aimed at reducing or better managing toxicities from therapy. With advances in treatment and survival, pediatric oncology patients continue to need longitudinal, multidisciplinary subspecialty care. Refining the communication between pediatric oncologists, primary pediatricians, survivorship clinics, and adult primary care is key in ensuring the best lifelong care of pediatric cancer survivors. In this State-of-The-Art review, we discuss 5 major domains in pediatric oncology: reducing toxicity, cancer biology, novel therapies, detection and monitoring, and access to care, to highlight recent advances and areas for continued improvement.


Subject(s)
Brain Neoplasms , Cancer Survivors , Neoplasms , Soft Tissue Neoplasms , Adult , Child , Humans , Neoplasms/therapy , Medical Oncology , Survivors
5.
J Pediatr Hematol Oncol ; 45(5): e621-e623, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36728269

ABSTRACT

Progressive familial intrahepatic cholestasis type 1 (PFIC1) is an inherited, progressive cholestatic liver disease. Here, we present an approach to the treatment of Ewing sarcoma in a patient with PFIC1. The diagnosis of PFIC1 presents a unique challenge in the treatment of Ewing sarcoma, as the standard-of-care vincristine, doxorubicin, cyclophosphamide/ifosfamide and etoposide chemotherapy backbone for Ewing sarcoma therapy treatment relies heavily on intact hepatic metabolism. In addition, we report prolonged lymphopenia and severe infectious complications in this patient, both of which may be attributed to more severe immunosuppression in setting of poor hepatic metabolism of chemotherapeutic agents.


Subject(s)
Bone Neoplasms , Cholestasis, Intrahepatic , Cholestasis , Sarcoma, Ewing , Humans , Sarcoma, Ewing/drug therapy , Bone Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/therapeutic use , Etoposide/therapeutic use , Ifosfamide , Doxorubicin/therapeutic use , Vincristine/therapeutic use
6.
Nat Cell Biol ; 25(2): 298-308, 2023 02.
Article in English | MEDLINE | ID: mdl-36658219

ABSTRACT

The EWS-FLI1 fusion oncoprotein deregulates transcription to initiate the paediatric cancer Ewing sarcoma. Here we used a domain-focused CRISPR screen to implicate the transcriptional repressor ETV6 as a unique dependency in this tumour. Using biochemical assays and epigenomics, we show that ETV6 competes with EWS-FLI1 for binding to select DNA elements enriched for short GGAA repeat sequences. Upon inactivating ETV6, EWS-FLI1 overtakes and hyper-activates these cis-elements to promote mesenchymal differentiation, with SOX11 being a key downstream target. We show that squelching of ETV6 with a dominant-interfering peptide phenocopies these effects and suppresses Ewing sarcoma growth in vivo. These findings reveal targeting of ETV6 as a strategy for neutralizing the EWS-FLI1 oncoprotein by reprogramming of genomic occupancy.


Subject(s)
Sarcoma, Ewing , Child , Humans , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
7.
Front Oncol ; 12: 1048705, 2022.
Article in English | MEDLINE | ID: mdl-36483025

ABSTRACT

Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most commonly diagnosed in adolescents. Given the continued poor outcomes for patients with metastatic and relapsed Ewing sarcoma, testing innovative therapeutic approaches is essential. Ewing sarcoma has been categorized as a 'BRCAness' tumor with emerging data characterizing a spectrum of DNA damage repair defects within individual Ewing tumors, including the presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare germline-based defects. It is critical to understand the cumulative impact of various DNA damage repair defects on an individual Ewing tumor's response to therapy. Further, in addition to DNA-damage-directed therapies, subsets of Ewing tumors may be more susceptible to DNA-damage/immunotherapy combinations given the significant cross-talk between DNA damage and inflammatory pathways in the tumor microenvironment. Here we review potential approaches utilizing DNA-damaging agents as modulators of the Ewing tumor immune microenvironment, with a focus on radiation and opportunities during disease metastasis and relapse.

8.
Cancer Res Commun ; 2(4): 220-232, 2022 04.
Article in English | MEDLINE | ID: mdl-36187937

ABSTRACT

Ewing sarcoma is a fusion oncoprotein-driven primary bone tumor. A subset of patients (~10%) with Ewing sarcoma are known to harbor germline variants in a growing number of genes involved in DNA damage repair. We recently reported our discovery of a germline mutation in the DNA damage repair protein BARD1 (BRCA1-associated RING domain-1) in a patient with Ewing sarcoma. BARD1 is recruited to the site of DNA double stranded breaks via the poly(ADP-ribose) polymerase (PARP) protein and plays a critical role in DNA damage response pathways including homologous recombination. We thus questioned the impact of BARD1 loss on Ewing cell sensitivity to DNA damage and the Ewing sarcoma transcriptome. We demonstrate that PSaRC318 cells, a novel patient-derived cell line harboring a pathogenic BARD1 variant, are sensitive to PARP inhibition and by testing the effect of BARD1 depletion in additional Ewing sarcoma cell lines, we confirm that BARD1 loss enhances cell sensitivity to PARP inhibition plus radiation. Additionally, RNA-seq analysis revealed that loss of BARD1 results in the upregulation of GBP1 (guanylate-binding protein 1), a protein whose expression is associated with variable response to therapy depending on the adult carcinoma subtype examined. Here, we demonstrate that GBP1 contributes to the enhanced sensitivity of BARD1 deficient Ewing cells to DNA damage. Together, our findings demonstrate the impact of loss-of function mutations in DNA damage repair genes, such as BARD1, on Ewing sarcoma treatment response.


Subject(s)
Bone Neoplasms , Neuroectodermal Tumors, Primitive, Peripheral , Sarcoma, Ewing , Humans , Sarcoma, Ewing/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Damage/genetics , DNA Repair/genetics , Bone Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , GTP-Binding Proteins/genetics , BRCA1 Protein/genetics
9.
NPJ Precis Oncol ; 6(1): 65, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115869

ABSTRACT

The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.

10.
Clin Cancer Res ; 28(22): 4968-4982, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36074145

ABSTRACT

PURPOSE: Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN: Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS: Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS: Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma, Ewing , Sarcoma , Adolescent , Humans , Sarcoma, Ewing/pathology , Neoplasm Recurrence, Local , Osteosarcoma/drug therapy , Bone Neoplasms/pathology , Cell Communication
11.
Clin Cancer Res ; 28(20): 4360-4362, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35921177

ABSTRACT

The posterior HOXD enhancer is an EWSR1::FLI1-dependent regulator of HOXD13 expression in Ewing sarcoma. HOXD13 expression promotes a mesenchymal cell state. Through antagonistic transcriptional programs, EWSR1::FLI1 and HOXD13 serve as master regulators of Ewing cell plasticity. Targeting Ewing cells as they exist in/transition between mesenchymal states is a priority. See related article by Apfelbaum et al., p. 4466.


Subject(s)
Sarcoma, Ewing , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
J Pediatr Hematol Oncol ; 44(8): 486-488, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35426856

ABSTRACT

Ewing sarcoma is an EWS-ETS family member-driven malignancy that most commonly arises from bone. Cutaneous Ewing sarcoma is a rare variant which harbors an EWS-ETS family fusion but demonstrates an immunohistochemical staining pattern distinct from classic Ewing tumors. EWSR1 fluorescence in situ hybridization testing interpretation can be challenging in the setting of cutaneous Ewing sarcoma, making an integrated histologic and sequencing approach key for an accurate diagnosis. Here, we report a pediatric patient with a history of neuroblastoma treated with surgery only that developed a cutaneous nodule and was diagnosed with cutaneous Ewing sarcoma as a second primary cancer.


Subject(s)
Bone Neoplasms , Neoplasms, Second Primary , Sarcoma, Ewing , Humans , Child , Sarcoma, Ewing/diagnosis , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/genetics , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Family , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology
13.
J Genet Couns ; 31(4): 901-911, 2022 08.
Article in English | MEDLINE | ID: mdl-35147246

ABSTRACT

Cancer predisposition syndromes (CPS) are underdiagnosed in the pediatric population, though the diagnosis of a CPS has important implications for the child and their family. CPS are often diagnosed by geneticists or oncologists with expertise in CPS following a malignancy. This requires a member of the care team, most commonly, the treating oncologist to suspect a CPS and refer the patient for CPS assessment. An online survey was distributed to members of the Children's Oncology Group to elucidate current referral practices and barriers to referral for patients suspected to have a CPS. Of the 183 respondents, 86.1% was pediatric oncologists and most (68.5%) used formal guidelines to aid in assessment. Most respondents indicated they would rarely refer patients with tumors highly associated with CPS for genetic assessment. Participants were more likely to refer patients with malignancy and additional features of a CPS than for a specific type of cancer, despite the use of guidelines. Parent knowledge of family history was considered the most challenging barrier to obtaining a family history, though a thorough pedigree was not consistently elicited. Providers indicated the most significant barrier to referral for CPS assessment was priority given the patient's immediate care needs. Identification of these barriers provides direction to focus efforts to increase referrals. Provider education about CPS, clear referral guidelines, and implementation of or increased collaboration with a genetic counselor in the pediatric oncology clinic may encourage CPS assessment and enable oncologists to focus on the patient's immediate care needs.


Subject(s)
Neoplasms , Referral and Consultation , Child , Humans , Medical History Taking , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Surveys and Questionnaires , United States
14.
Brain Pathol ; 31(1): 70-83, 2021 01.
Article in English | MEDLINE | ID: mdl-32997853

ABSTRACT

The group of CNS mesenchymal (non-meningothelial) and primary glial/neuronal tumors in association with EWSR1-non-ETS rearrangements comprises a growing spectrum of entities, mostly reported in isolation with incomplete molecular profiling. Archival files from three pediatric institutions were queried for unusual cases of pediatric (≤21 years) CNS EWSR1-rearranged tumors confirmed by at least one molecular technique. Extra-axial tumors and cases with a diagnosis of Ewing sarcoma (EWSR1-ETS family fusions) were excluded. Additional studies, including anchored multiplex-PCR with next-generation sequencing and DNA methylation profiling, were performed as needed to determine fusion partner status and brain tumor methylation class, respectively. Five cases (median 17 years) were identified (M:F of 3:2). Location was parenchymal (n = 3) and undetermined (n = 2) with topographic distributions including posterior fossa (n = 1), frontal (n = 1), temporal (n = 1), parietal (n = 1) and occipital (n = 1) lobes. Final designation with fusion findings included desmoplastic small round cell tumor (EWSR1-WT1; n = 1) and tumors of uncertain histogenesis (EWSR1-CREM, n = 1; EWSR1-CREB1, n = 1; EWSR1-PLAGL1, n = 1; and EWSR1-PATZ1, n = 1). Tumors showed a wide spectrum of morphology and biologic behavior. For EWSR1-CREM, EWSR1-PLAGL1 and EWSR1-PATZ1 tumors, no significant methylation scores were reached in the known brain tumor classes. Available outcome (4/5) was reported as favorable (n = 2) and unfavorable (n = 2) with a median follow-up of 30 months. In conclusion, we describe five primary EWSR1-non-ETS fused CNS tumors exhibiting morphologic and biologic heterogeneity and we highlight the clinical importance of determining specific fusion partners to improve diagnostic accuracy, treatment and monitoring. Larger prospective clinicopathological and molecular studies are needed to determine the prognostic implications of histotypes, anatomical location, fusion partners, breakpoints and methylation profiles in patients with these rare tumors.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA-Binding Protein EWS/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Oncogene Fusion , Oncogene Proteins, Fusion/genetics , Young Adult
15.
Mol Cancer Ther ; 19(3): 847-857, 2020 03.
Article in English | MEDLINE | ID: mdl-31911531

ABSTRACT

The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated in approximately 15% to 20% of patients with intrahepatic cholangiocarcinoma. Currently, several FGFR kinase inhibitors are being assessed in clinical trials for patients with FGFR-altered cholangiocarcinoma. Despite evidence of initial responses and disease control, virtually all patients eventually develop acquired resistance. Thus, there is a critical need for the development of innovative therapeutic strategies to overcome acquired drug resistance. Here, we present findings from a patient with FGFR2-altered metastatic cholangiocarcinoma who enrolled in a phase II clinical trial of the FGFR inhibitor, infigratinib (BGJ398). Treatment was initially effective as demonstrated by imaging and tumor marker response; however, after 8 months on trial, the patient exhibited tumor regrowth and disease progression. Targeted sequencing of tumor DNA after disease progression revealed the FGFR2 kinase domain p.E565A and p.L617M single-nucleotide variants (SNV) hypothesized to drive acquired resistance to infigratinib. The sensitivities of these FGFR2 SNVs, which were detected post-infigratinib therapy, were extended to include clinically relevant FGFR inhibitors, including AZD4547, erdafitinib (JNJ-42756493), dovitinib, ponatinib, and TAS120, and were evaluated in vitro Through a proteomics approach, we identified upregulation of the PI3K/AKT/mTOR signaling pathway in cells harboring the FGFR2 p.E565A mutation and demonstrated that combination therapy strategies with FGFR and mTOR inhibitors may be used to overcome resistance to FGFR inhibition, specific to infigratinib. Collectively, these studies support the development of novel combination therapeutic strategies in addition to the next generation of FGFR inhibitors to overcome acquired resistance in patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bile Duct Neoplasms/drug therapy , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/drug therapy , Drug Resistance, Neoplasm , Oncogene Proteins, Fusion/genetics , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Apoptosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Biomarkers, Tumor/genetics , Cell Proliferation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Mutation , Prognosis , Receptor, Fibroblast Growth Factor, Type 2/genetics , Signal Transduction , Tumor Cells, Cultured
16.
Neoplasia ; 21(10): 1063-1072, 2019 10.
Article in English | MEDLINE | ID: mdl-31521948

ABSTRACT

Ewing sarcoma is a bone tumor most commonly diagnosed in adolescents and young adults. Survival for patients with recurrent or metastatic Ewing sarcoma is dismal and there is a dire need to better understand the mechanisms of cell metastasis specific to this disease. Our recent work demonstrated that microenvironmental stress leads to increased Ewing sarcoma cell invasion through Src activation. Additionally, we have shown that the matricellular protein tenascin C (TNC) promotes metastasis in Ewing sarcoma. A major role of both TNC and Src is mediation of cell-cell and cell-matrix interactions resulting in changes in cell motility, invasion, and adhesion. However, it remains largely unknown, if and how, TNC and Src are linked in these processes. We hypothesized that TNC is a positive regulator of invadopodia formation in Ewing sarcoma through its ability to activate Src. We demonstrate here that both tumor cell endogenous and exogenous TNC can enhance Src activation and invadopodia formation in Ewing sarcoma. We found that microenvironmental stress upregulates TNC expression and this is dampened with application of the Src inhibitor dasatinib, suggesting that TNC expression and Src activation cooperate to promote the invasive phenotype. This work reports the impact of stress-induced TNC expression on enhancing cell invadopodia formation, provides evidence for a feed forward loop between TNC and Src to promote cell metastatic behavior, and highlights a pathway by which microenvironment-driven TNC expression could be therapeutically targeted in Ewing sarcoma.


Subject(s)
Podosomes/metabolism , Sarcoma, Ewing/etiology , Sarcoma, Ewing/metabolism , Tenascin/metabolism , Tumor Microenvironment , src-Family Kinases/metabolism , Cell Line, Tumor , Cells, Cultured , Dasatinib/pharmacology , Gene Expression , Gene Expression Profiling , Humans , Immunohistochemistry , Models, Biological , Phosphorylation , Podosomes/genetics , Sarcoma, Ewing/pathology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Tumor Microenvironment/genetics , Wnt Proteins/metabolism
17.
Oncogene ; 38(49): 7384-7398, 2019 12.
Article in English | MEDLINE | ID: mdl-31420608

ABSTRACT

Protease-activated receptor 1 (PAR1), a thrombin-responsive G protein-coupled receptor (GPCR), is implicated in promoting metastasis in multiple tumor types, including both sarcomas and carcinomas, but the molecular mechanisms responsible remain largely unknown. We previously discovered that PAR1 stimulation in endothelial cells leads to activation of NF-κB, mediated by a protein complex comprised of CARMA3, Bcl10, and the MALT1 effector protein (CBM complex). Given the strong association between NF-κB and metastasis, we hypothesized that this CBM complex could play a critical role in the PAR1-driven metastatic progression of specific solid tumors. In support of our hypothesis, we demonstrate that PAR1 stimulation results in NF-κB activation in both osteosarcoma and breast cancer, which is suppressed by siRNA-mediated MALT1 knockdown, suggesting that an intact CBM complex is required for the response in both tumor cell types. We identify several metastasis-associated genes that are upregulated in a MALT1-dependent manner after PAR1 stimulation in cancer cells, including those encoding the matrix remodeling protein, MMP9, and the cytokines, IL-1ß and IL-8. Further, exogenous expression of PAR1 in MCF7 breast cancer cells confers highly invasive and metastatic behavior which can be blocked by CRISPR/Cas9-mediated MALT1 knockout. Importantly, we find that PAR1 stimulation induces MALT1 protease activity in both osteosarcoma and breast cancer cells, an activity that is mechanistically linked to NF-κB activation and potentially other responses associated with aggressive phenotype. Several small molecule MALT1 protease inhibitors have recently been described that could therefore represent promising new therapeutics for the prevention and/or treatment of PAR1-driven tumor metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , NF-kappa B/metabolism , Osteosarcoma/pathology , Receptor, PAR-1/metabolism , Animals , Apoptosis , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , NF-kappa B/genetics , Osteosarcoma/genetics , Osteosarcoma/metabolism , Receptor, PAR-1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Oncotarget ; 10(36): 3385-3399, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31164960

ABSTRACT

Metastatic and relapsed Ewing sarcoma typically afflicts the adolescent population and is largely fatal. These bone tumors are most commonly driven by the fusion oncoprotein EWS-FLI1. Ewing tumors demonstrate significant intra-tumoral heterogeneity, and individual tumor cells can express highly variable and dynamic levels of EWS-FLI1. Recent studies revealed that the EWS-FLI1 oncoprotein level (high versus low expression) greatly influences the behavior of Ewing tumor cells. As compared to cells with high EWS-FLI1, Ewing cells in the EWS-FLI1 low state demonstrate an increased propensity for metastasis. In light of these observations, we sought to determine how tumor cell EWS-FLI1 level influences the anti-tumor cell immune response. Since ICAM-1, which can promote tumor cell/T-cell interaction and T-cell activation, is highly expressed on EWS-FLI1 low cells, we hypothesized that EWS-FLI1 low cells would be more susceptible to T-cell mediated tumor cell apoptosis as compared to cells with high EWS-FLI1. Unexpectedly, we found that EWS-FLI1 low cells are more resistant to T-cell mediated apoptosis than EWS-FLI1 high cells. We investigated the potential mechanisms by which EWS-FLI1 level might influence the T-cell anti-tumor response, and discovered that low EWS-FLI1 expression results in upregulation of PD-L1 and PD-L2, both important ligands for the PD-1 immune checkpoint receptor on T-cells. We demonstrated that blocking PD-1 results in a greater increase of T-cell mediated killing of EWS-FLI1 low tumor cells as compared to cells with higher EWS-FLI1 expression. Our studies suggest that Ewing cells in the EWS-FLI1 low expression state may serve as a niche of tumor immune-evasion.

20.
Article in English | MEDLINE | ID: mdl-32832834

ABSTRACT

PURPOSE: DICER1 syndrome is a recently described inherited cancer predisposition syndrome caused by pathogenic variants in DICER1. With the recent increase in integrative clinical sequencing for pediatric patients with cancer, our understanding of the DICER1 syndrome continues to evolve, as new and rare pathogenic variants are reported. As the frequency of integrative clinical sequencing increases, discussions regarding challenges encountered in the interpretation of sequencing results are essential to continue to advance the field of cancer predisposition. The purpose of this work was to identify patients with somatic and/or germline DICER1 variants in our patient population and to discuss sequencing interpretation and the clinical recommendations that result from the integrative clinical sequencing results. METHODS: Patients were enrolled in the PEDS-MIONCOSEQ study. This integrative clinical sequencing study includes paired tumor/normal whole-exome sequencing and tumor transcriptome sequencing. Patients identified as having DICER1 variants were included. RESULTS: We report a DICER1 variant of unknown clinical significance in a patient with a highly unusual response to therapy. Two patients had diagnoses clarified once the integrative clinical sequencing revealing a DICER1 variant was available. We also discovered a patient with low-level DICER1 mosaicism and the challenges encountered in the sequencing interpretation for this patient. In addition to the sequencing data and result interpretation, this work also highlights testing and screening recommendations made to patients with DICER1 variants and their families on the basis of these results. CONCLUSION: This work serves to extend the DICER1 phenotype and advance the utility of clinical integrative sequencing in the fields of pediatric oncology and cancer genetic predisposition.

SELECTION OF CITATIONS
SEARCH DETAIL