Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Mater Chem B ; 12(36): 8929-8940, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39145569

ABSTRACT

Soft bioelectronic neural interfaces have great potential as mechanically favourable alternatives to implantable metal electrodes. In this pursuit, conductive hydrogels (CHs) are particularly viable, combining tissue compliance with the required electrochemical characteristics. Physically-aggregated CHs offer an additional advantage by their facile synthesis into injectable systems, enabling minimally invasive implantation, though they can be impeded by a lack of control over their particle size and packing. Guided by these principles, an injectable PEDOT:PSS/acetic acid-based hydrogel is presented herein whose mechanical and electrochemical properties are independently tuneable by modifying the relative acetic acid composition. The fabrication process further benefits from employing batch emulsion to decrease particle sizes and facilitate tighter packing. The resulting material is stable and anatomically compact upon injection both in tissue phantom and ex vivo, while retaining favourable electrochemical properties in both contexts. Biphasic current stimulation yielding voltage transients well below the charge injection limit as well as the gel's non-cytotoxicity further underscore its potential for safe and effective neural interfacing applications.


Subject(s)
Electric Conductivity , Hydrogels , Hydrogels/chemistry , Animals , Injections , Electrodes , Polystyrenes/chemistry , Particle Size , Biocompatible Materials/chemistry , Electrodes, Implanted , Thiophenes
2.
Adv Healthc Mater ; 13(24): e2304447, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38775757

ABSTRACT

The advent of closed-loop bionics has created a demand for electrode materials that are ideal for both stimulating and recording applications. The growing complexity and diminishing size of implantable devices for neural interfaces have moved beyond what can be achieved with conventional metallic electrode materials. Polymeric electrode materials are a recent development based on polymer composites of organic conductors such as conductive polymers. These materials present exciting new opportunities in the design and fabrication of next-generation electrode arrays which can overcome the electrochemical and mechanical limitations of conventional electrode materials. This review will examine the recent developments in polymeric electrode materials, their application as stimulating and recording electrodes in bionic devices, and their impact on the development of soft, conformal, and high-density neural interfaces.


Subject(s)
Polymers , Polymers/chemistry , Humans , Electrodes , Bionics/methods , Electrodes, Implanted , Animals
3.
Article in English | MEDLINE | ID: mdl-38083283

ABSTRACT

Recent trends in the field of bioelectronics have been focused on the development of electrodes that facilitate safe and efficient stimulation of nervous tissues. Novel conducting polymer (CP) based materials, such as flexible and fully polymeric conductive elastomers (CEs), constitute a promising alternative to improve on the limitations of current metallic devices. This pilot study demonstrates the performance of tripolar CE-based peripheral nerve cuffs compared to current commercial tripolar platinum-iridium (PtIr) nerve cuffs in vivo. CE and metallic cuff devices were implanted onto rodent sciatic nerves for a period of 8 weeks. Throughout the entire study, the CE device demonstrated improved charge transfer and electrochemical safety compared to the PtIr cuff, able to safely inject 2 to 3 times more charge. In comparison to the commercial control, the CE cuff was able to record in the in vivo setting with reduced noise and produced smaller voltages at all simulation levels. CE technologies provide a promising alternative to metallic devices for the development of bioelectronics with enhanced chronic device functionality.


Subject(s)
Polymers , Sciatic Nerve , Pilot Projects , Electrodes , Sciatic Nerve/physiology , Prostheses and Implants
4.
J Hand Surg Eur Vol ; 48(3): 182-190, 2023 03.
Article in English | MEDLINE | ID: mdl-36649123

ABSTRACT

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.


Subject(s)
Artificial Limbs , Animals , Humans , Upper Extremity/surgery , Hand/surgery , Hand/physiology , Sensation , Feedback, Sensory , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL