Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842420

ABSTRACT

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted towards different metabolic fates, including cyoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phospho-glycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.

2.
New Phytol ; 241(5): 2193-2208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095198

ABSTRACT

Diatoms, the main eukaryotic phytoplankton of the polar marine regions, are essential for the maintenance of food chains specific to Arctic and Antarctic ecosystems, and are experiencing major disturbances under current climate change. As such, it is fundamental to understand the physiological mechanisms and associated molecular basis of their endurance during the long polar night. Here, using the polar diatom Fragilariopsis cylindrus, we report an integrative analysis combining transcriptomic, microscopic and biochemical approaches to shed light on the strategies used to survive the polar night. We reveal that in prolonged darkness, diatom cells enter a state of quiescence with reduced metabolic and transcriptional activity, during which no cell division occurs. We propose that minimal energy is provided by respiration and degradation of protein, carbohydrate and lipid stores and that homeostasis is maintained by autophagy in prolonged darkness. We also report internal structural changes that manifest the morphological acclimation of cells to darkness, including the appearance of a large vacuole. Our results further show that immediately following a return to light, diatom cells are able to use photoprotective mechanisms and rapidly resume photosynthesis, demonstrating the remarkable robustness of polar diatoms to prolonged darkness at low temperature.


Subject(s)
Diatoms , Diatoms/metabolism , Ecosystem , Phytoplankton , Photosynthesis/physiology , Cold Temperature
3.
Pest Manag Sci ; 80(1): 156-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37293747

ABSTRACT

BACKGROUND: Radulanin A is a natural 2,5-dihydrobenzoxepin synthesized by several liverworts of the Radula genus. Breakthroughs in the total synthesis of radulanin A paved the way for the discovery of its phytotoxic activity. Nevertheless, its mode-of-action (MoA) has remained unknown so far and thus was investigated, in Arabidopsis thaliana. RESULTS: Radulanin A phytotoxicity was associated with cell death and partially depended on light exposure. Photosynthesis measurements based on chlorophyll-a fluorescence evidenced that radulanin A and a Radula chromene inhibited photosynthetic electron transport with IC50 of 95 and 100 µm, respectively. We established a strong correlation between inhibition of photosynthesis and phytotoxicity for a range of radulanin A analogs. Based on these data, we also determined that radulanin A phytotoxicity was abolished when the hydroxyl group was modified, and was modulated by the presence of the heterocycle and its aliphatic chain. Thermoluminescence studies highlighted that radulanin A targeted the QB site of the Photosystem II (PSII) with a similar MoA as 3-(3,4-dichloropheny)-1,1-dimethylurea (DCMU). CONCLUSION: We establish that radulanin A targets PSII, expanding QB sites inhibitors to bibenzyl compounds. The identification of an easy-to-synthesize analog of radulanin A with similar MoA and efficiency might be useful for future herbicide development. © 2023 Society of Chemical Industry.


Subject(s)
Arabidopsis , Herbicides , Herbicides/pharmacology , Herbicides/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll/chemistry , Photosynthesis , Electron Transport
4.
New Phytol ; 234(2): 578-591, 2022 04.
Article in English | MEDLINE | ID: mdl-35092009

ABSTRACT

Diatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H+ /K+ antiporter KEA3 in the model diatom Phaeodactylum tricornutum. Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca2+ )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces.


Subject(s)
Diatoms , Acclimatization , Diatoms/metabolism , Light , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Protons
5.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36847462

ABSTRACT

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Subject(s)
Chlamydomonas reinhardtii , Microalgae , Ecosystem , Photosynthesis , Biodiversity , Chlamydomonas reinhardtii/genetics
6.
Sci Rep ; 11(1): 12750, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140542

ABSTRACT

Diatoms possess an efficient mechanism to dissipate photons as heat in conditions of excess light, which is visualized as the Non-Photochemical Quenching of chlorophyll a fluorescence (NPQ). In most diatom species, NPQ is proportional to the concentration of the xanthophyll cycle pigment diatoxanthin formed from diadinoxanthin by the diadinoxanthin de-epoxidase enzyme. The reverse reaction is performed by the diatoxanthin epoxidase. Despite the xanthophyll cycle's central role in photoprotection, its regulation is not yet well understood. The proportionality between diatoxanthin and NPQ allowed us to calculate the activity of both xanthophyll cycle enzymes in the model diatom Phaeodactylum tricornutum from NPQ kinetics. From there, we explored the light-dependency of the activity of both enzymes. Our results demonstrate that a tight regulation of both enzymes is key to fine-tune NPQ: (i) the rate constant of diadinoxanthin de-epoxidation is low under a light-limiting regime but increases as photosynthesis saturates, probably due to the thylakoidal proton gradient ΔpH (ii) the rate constant of diatoxanthin epoxidation exhibits an optimum under low light and decreases in the dark due to an insufficiency of the co-factor NADPH as well as in higher light through an as yet unresolved inhibition mechanism, that is unlikely to be related to the ΔpH. We observed that the suppression of NPQ by an uncoupler was due to an accelerated diatoxanthin epoxidation enzyme rather than to the usually hypothesized inhibition of the diadinoxanthin de-epoxidation enzyme.


Subject(s)
Diatoms/metabolism , Enzymes/metabolism , Xanthophylls/metabolism , Chlorophyll A/metabolism , Epoxy Compounds/metabolism , Fluorescence , Kinetics , Light
7.
Biochim Biophys Acta Bioenerg ; 1862(9): 148449, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34004195

ABSTRACT

Many cyanobacteria species can use both plastocyanin and cytochrome c6 as lumenal electron carriers to shuttle electrons from the cytochrome b6f to either photosystem I or the respiratory cytochrome c oxidase. In Synechocystis sp. PCC6803 placed in darkness, about 60% of the active PSI centres are bound to a reduced electron donor which is responsible for the fast re-reduction of P700in vivo after a single charge separation. Here, we show that both cytochrome c6 and plastocyanin can bind to PSI in the dark and participate to the fast phase of P700 reduction, but the fraction of pre-bound PSI is smaller in the case of cytochrome c6 than with plastocyanin. Because of the inter-connection of respiration and photosynthesis in cyanobacteria, the inhibition of the cytochrome c oxidase results in the over-reduction of the photosynthetic electron transfer chain in the dark that translates into a lag in the kinetics of P700 oxidation at the onset of light. We show that this is true both with plastocyanin and cytochrome c6, indicating that the partitioning of electron transport between respiration and photosynthesis is regulated in the same way independently of which of the two lumenal electron carriers is present, although the mechanisms of such regulation are yet to be understood.


Subject(s)
Cytochromes c6/chemistry , Photosystem I Protein Complex/chemistry , Plastocyanin/chemistry , Synechocystis/metabolism , Chlorophyll/chemistry , Cyanobacteria/metabolism , Electron Transport , Electron Transport Complex IV/chemistry , Kinetics , Oxidation-Reduction , Photosynthesis , Thylakoids/chemistry
8.
Harmful Algae ; 103: 101997, 2021 03.
Article in English | MEDLINE | ID: mdl-33980437

ABSTRACT

Allelopathy is an efficient strategy by which some microalgae can outcompete other species. Allelochemicals from the toxic dinoflagellate Alexandrium minutum have deleterious effects on diatoms, inhibiting metabolism and photosynthesis and therefore give a competitive advantage to the dinoflagellate. The precise mechanisms of allelochemical interactions and the molecular target of allelochemicals remain however unknown. To understand the mechanisms, the short-term effects of A. minutum allelochemicals on the physiology of the diatom Chaetoceros muelleri were investigated. The effects of a culture filtrate were measured on the diatom cytoplasmic membrane integrity (polarity and permeability) using flow-cytometry and on the photosynthetic performance using fluorescence and absorption spectroscopy. Within 10 min, the unknown allelochemicals induced a depolarization of the cytoplasmic membranes and an impairment of photosynthesis through the inhibition of the plastoquinone-mediated electron transfer between photosystem II and cytochrome b6f. At longer time of exposure, the cytoplasmic membranes were permeable and the integrity of photosystems I, II and cytochrome b6f was compromised. Our demonstration of the essential role of membranes in this allelochemical interaction provides new insights for the elucidation of the nature of the allelochemicals. The relationship between cytoplasmic membranes and the inhibition of the photosynthetic electron transfer remains however unclear and warrants further investigation.


Subject(s)
Diatoms , Dinoflagellida , Diatoms/metabolism , Dinoflagellida/metabolism , Kinetics , Pheromones/metabolism , Photosynthesis
9.
Biochim Biophys Acta Bioenerg ; 1862(8): 148434, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33932368

ABSTRACT

The chloroplast ATP synthase (CF1Fo) contains a specific feature to the green lineage: a γ-subunit redox domain that contains a cysteine couple which interacts with the torque-transmitting ßDELSEED-loop. This thiol modulation equips CF1Fo with an important environmental fine-tuning mechanism. In vitro, disulfide formation in the γ-redox domain slows down the activity of the CF1Fo at low transmembrane electrochemical proton gradient ( [Formula: see text] ), which agrees with its proposed role as chock based on recently solved structure. The γ-dithiol formation at the onset of light is crucial to maximize photosynthetic efficiency since it lowers the [Formula: see text] activation level for ATP synthesis in vitro. Here, we validate these findings in vivo by utilizing absorption spectroscopy in Arabidopsis thaliana. To do so, we monitored the [Formula: see text] present in darkness and identified its mitochondrial sources. By following the fate and components of light-induced extra [Formula: see text] , we estimated the ATP lifetime that lasted up to tens of minutes after long illuminations. Based on the relationship between [Formula: see text] and CF1Fo activity, we conclude that the dithiol configuration in vivo facilitates photosynthesis by driving the same ATP synthesis rate at a significative lower [Formula: see text] than in the γ-disulfide state. The presented in vivo findings are an additional proof of the importance of CF1Fo thiol modulation, reconciling biochemical in vitro studies and structural insights.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplast Proton-Translocating ATPases/metabolism , Photosynthesis , Plant Leaves/metabolism , Proton-Motive Force , Sulfhydryl Compounds/metabolism , Arabidopsis/growth & development , Oxidation-Reduction , Plant Leaves/growth & development
10.
Anal Chem ; 92(11): 7532-7539, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32352279

ABSTRACT

Microbial solar cells that mainly rely on the use of photosynthesic organisms are a promising alternative to photovoltaics for solar electricity production. In that way, we propose a new approach involving electrochemistry and fluorescence techniques. The coupled setup Electro-Pulse-Amplitude-Modulation ("e-PAM") enables the simultaneous recording of the produced photocurrent and fluorescence signals from the photosynthetic chain. This methodology was validated with a suspension of green alga Chlamydomonas reinhardtii in interaction with an exogenous redox mediator (2,6-dichlorobenzoquinone; DCBQ). The balance between photosynthetic chain events (PSII photochemical yield, quenching) and the extracted electricity can be monitored overtime. More particularly, the nonphotochemical quenching induced by DCBQ mirrors the photocurrent. This setup thus helps to distinguish the electron harvesting from some side effects due to quinones in real time. It therefore paves the way for future analyses devoted to the choice of the experimental conditions (redox mediator, photosynthetic organisms, and so on) to find the best electron extraction.


Subject(s)
Bioelectric Energy Sources , Chlamydomonas reinhardtii/metabolism , Electrochemical Techniques , Solar Energy , Electrochemical Techniques/instrumentation , Electrons
11.
Plant Cell ; 32(3): 547-572, 2020 03.
Article in English | MEDLINE | ID: mdl-31852772

ABSTRACT

Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.


Subject(s)
Biodiversity , Diatoms/physiology , Models, Biological , Phytoplankton/physiology , Diatoms/genetics , Genomics , Phylogeny , Phytoplankton/genetics
12.
Chembiochem ; 21(8): 1206-1216, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31747114

ABSTRACT

The mechanisms underlying interactions between diatoms and bacteria are crucial to understand diatom behaviour and proliferation, and can result in far-reaching ecological consequences. Recently, 2-alkyl-4-quinolones have been isolated from marine bacteria, both of which (the bacterium and isolated chemical) inhibited growth of microalgae, suggesting these compounds could mediate diatom-bacteria interactions. The effects of several quinolones on three diatom species have been investigated. The growth of all three was inhibited, with half-maximal inhibitory concentrations reaching the sub-micromolar range. By using multiple techniques, dual inhibition mechanisms were uncovered for 2-heptyl-4-quinolone (HHQ) in Phaeodactylum tricornutum. Firstly, photosynthetic electron transport was obstructed, primarily through inhibition of the cytochrome b6 f complex. Secondly, respiration was inhibited, leading to repression of ATP supply to plastids from mitochondria through organelle energy coupling. These data clearly show how HHQ could modulate diatom proliferation in marine environments.


Subject(s)
4-Quinolones/pharmacology , Adenosine Triphosphate/metabolism , Cytochrome b6f Complex/antagonists & inhibitors , Diatoms/drug effects , Mitochondria/physiology , Plastids/drug effects , Thylakoids/metabolism , Chloroplasts/drug effects , Diatoms/growth & development , Mitochondria/drug effects , Photosynthesis
13.
Proc Natl Acad Sci U S A ; 116(43): 21900-21906, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591197

ABSTRACT

In plants, algae, and some photosynthetic bacteria, the ElectroChromic Shift (ECS) of photosynthetic pigments, which senses the electric field across photosynthetic membranes, is widely used to quantify the activity of the photosynthetic chain. In cyanobacteria, ECS signals have never been used for physiological studies, although they can provide a unique tool to study the architecture and function of the respiratory and photosynthetic electron transfer chains, entangled in the thylakoid membranes. Here, we identified bona fide ECS signals, likely corresponding to carotenoid band shifts, in the model cyanobacteria Synechococcus elongatus PCC7942 and Synechocystis sp. PCC6803. These band shifts, most likely originating from pigments located in photosystem I, have highly similar spectra in the 2 species and can be best measured as the difference between the absorption changes at 500 to 505 nm and the ones at 480 to 485 nm. These signals respond linearly to the electric field and display the basic kinetic features of ECS as characterized in other organisms. We demonstrate that these probes are an ideal tool to study photosynthetic physiology in vivo, e.g., the fraction of PSI centers that are prebound by plastocyanin/cytochrome c6 in darkness (about 60% in both cyanobacteria, in our experiments), the conductivity of the thylakoid membrane (largely reflecting the activity of the ATP synthase), or the steady-state rates of the photosynthetic electron transport pathways.


Subject(s)
Synechococcus/metabolism , Thylakoids/metabolism , Electron Transport , Electrophysiology , Membrane Potentials , Photosynthesis , Photosystem I Protein Complex/metabolism , Plastocyanin/metabolism
14.
ACS Chem Biol ; 14(2): 198-203, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30694649

ABSTRACT

Marine bacteria contribute substantially to nutrient cycling in the oceans and can engage in close interactions with microalgae. Many microalgae harbor characteristic satellite bacteria, many of which participate in N-acyl homoserine lactone (AHL) mediated quorum sensing. In the diffusion-controlled phycosphere, AHLs can reach high local concentrations, with some of them transforming into tetramic acids, compounds with a broad bioactivity. We tested a representative AHL, N-(3-oxododecanoyl) homoserine lactone, and its tetramic acid rearrangement product on the diatom Phaeodactylum tricornutum. While cell growth and photosynthetic efficiency of photosystem II were barely affected by the AHL, exposure to its tetramic acid rearrangement product had a negative effect on photosynthetic efficiency and led to growth inhibition and cell death in the long term, with a minimum inhibitory concentration between 20 and 50 µΜ. These results strengthen the view that AHLs may play an important role in shaping the outcome of microalgae-bacteria interactions.


Subject(s)
4-Butyrolactone/analogs & derivatives , Diatoms/drug effects , Photosynthesis/drug effects , Pyrrolidinones/pharmacology , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Diatoms/growth & development , Diatoms/physiology
15.
Plant Physiol ; 179(2): 630-639, 2019 02.
Article in English | MEDLINE | ID: mdl-30498023

ABSTRACT

Whereas photosynthetic function under steady-state light conditions has been well characterized, little is known about its changes that occur in response to light fluctuations. Chlororespiration, a simplified respiratory chain, is widespread across all photosynthetic lineages, but its role remains elusive. Here, we show that chlororespiration plays a crucial role in intermittent-light conditions in the green alga Chlamydomonas reinhardtii Chlororespiration, which is localized in thylakoid membranes together with the photosynthetic electron transfer chain, involves plastoquinone reduction and plastoquinol oxidation by a Plastid Terminal Oxidase (PTOX). We show that PTOX activity is critical for growth under intermittent light, with severe growth defects being observed in a mutant lacking PTOX2, the major plastoquinol oxidase. We demonstrate that the hampered growth results from a major change in the kinetics of redox relaxation of the photosynthetic electron transfer chain during the dark periods. This change, in turn, has a dramatic effect on the physiology of photosynthesis during the light periods, notably stimulating cyclic electron flow at the expense of the linear electron flow.


Subject(s)
Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Chlamydomonas reinhardtii/genetics , Cytochrome b6f Complex/metabolism , Darkness , Electron Transport , Light , Mutation , Oxidation-Reduction , Oxidoreductases/genetics , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Plant Proteins/genetics , Plastoquinone/analogs & derivatives , Plastoquinone/metabolism , Thylakoids/metabolism , Up-Regulation
16.
Plant J ; 92(4): 584-595, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28857403

ABSTRACT

The qualitative screening method used to select complex I mutants in the microalga Chlamydomonas, based on reduced growth under heterotrophic conditions, is not suitable for high-throughput screening. In order to develop a fast screening method based on measurements of chlorophyll fluorescence, we first demonstrated that complex I mutants displayed decreased photosystem II efficiency in the genetic background of a photosynthetic mutation leading to reduced formation of the electrochemical proton gradient in the chloroplast (pgrl1 mutation). In contrast, single mutants (complex I and pgrl1 mutants) could not be distinguished from the wild type by their photosystem II efficiency under the conditions tested. We next performed insertional mutagenesis on the pgrl1 mutant. Out of about 3000 hygromycin-resistant insertional transformants, 46 had decreased photosystem II efficiency and three were complex I mutants. One of the mutants was tagged and whole genome sequencing identified the resistance cassette in NDUFAF3, a homolog of the human NDUFAF3 gene, encoding for an assembly factor involved in complex I assembly. Complemented strains showed restored complex I activity and assembly. Overall, we describe here a screening method which is fast and particularly suited for the identification of Chlamydomonas complex I mutants.


Subject(s)
Algal Proteins/metabolism , Chlamydomonas reinhardtii/genetics , Electron Transport Complex I/metabolism , Mitochondrial Proteins/metabolism , Photosystem II Protein Complex/metabolism , Algal Proteins/genetics , Amino Acid Sequence , Chlamydomonas reinhardtii/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Electron Transport Complex I/genetics , Fluorescence , Gene Library , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Mutation , Photosynthesis , Photosystem II Protein Complex/genetics , Sequence Alignment , Sequence Analysis, DNA
17.
Biochim Biophys Acta Bioenerg ; 1858(12): 966-974, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28890176

ABSTRACT

The chloroplast F1Fo-ATP synthase (CF1Fo) drives ATP synthesis and the reverse reaction of ATP hydrolysis. The enzyme evolved in a cellular environment where electron transfer processes and molecular oxygen are abundant, and thiol modulation in the γ-subunit via thioredoxin is important for its ATPase activity regulation. Especially under high light, oxygen can be reduced and forms reactive oxygen species (ROS) which can oxidize CF1Fo among various other biomolecules. Mutation of the conserved ROS targets resulted in a tolerant enzyme, suggesting that ROS might play a regulatory role. The mutations had several side effects in vitro, including disturbance of the ATPase redox regulation [F. Buchert et al., Biochim. Biophys. Acta, 1817 (2012) 2038-2048]. This would prevent disentanglement of thiol- and ROS-specific modes of regulation. Here, we used the F1 catalytic core in vitro to identify a point mutant with a functional ATPase redox regulation and increased H2O2 tolerance. In the next step, the mutation was introduced into Chlamydomonas reinhardtii CF1Fo, thereby allowing us to study the physiological role of ROS regulation of the enzyme in vivo. We demonstrated in high light experiments that CF1Fo ROS targets were involved in the significant inhibition of ATP synthesis rates. Molecular events upon modification of CF1Fo by ROS will be considered.


Subject(s)
Chlamydomonas reinhardtii/enzymology , Chloroplasts/enzymology , Mitochondrial Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/genetics , Chloroplast Proton-Translocating ATPases/chemistry , Chloroplast Proton-Translocating ATPases/genetics , Hydrogen Peroxide/chemistry , Mitochondrial Proton-Translocating ATPases/chemistry , Oxidation-Reduction , Point Mutation/genetics , Proton-Translocating ATPases/chemistry , Reactive Oxygen Species/metabolism , Thioredoxins/genetics
18.
Nat Microbiol ; 2(10): 1350-1357, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28785078

ABSTRACT

Cyanobacteria are important contributors to primary production in the open oceans. Over the past decade, various photosynthesis-related genes have been found in viruses that infect cyanobacteria (cyanophages). Although photosystem II (PSII) genes are common in both cultured cyanophages and environmental samples 1-4 , viral photosystem I (vPSI) genes have so far only been detected in environmental samples 5,6 . Here, we have used a targeted strategy to isolate a cyanophage from the tropical Pacific Ocean that carries a PSI gene cassette with seven distinct PSI genes (psaJF, C, A, B, K, E, D) as well as two PSII genes (psbA, D). This cyanophage, P-TIM68, belongs to the T4-like myoviruses, has a prolate capsid, a long contractile tail and infects Prochlorococcus sp. strain MIT9515. Phage photosynthesis genes from both photosystems are expressed during infection, and the resultant proteins are incorporated into membranes of the infected host. Moreover, photosynthetic capacity in the cell is maintained throughout the infection cycle with enhancement of cyclic electron flow around PSI. Analysis of metagenomic data from the Tara Oceans expedition 7 shows that phages carrying PSI gene cassettes are abundant in the tropical Pacific Ocean, composing up to 28% of T4-like cyanomyophages. They are also present in the tropical Indian and Atlantic Oceans. P-TIM68 populations, specifically, compose on average 22% of the PSI-gene-cassette carrying phages. Our results suggest that cyanophages carrying PSI and PSII genes are likely to maintain and even manipulate photosynthesis during infection of their Prochlorococcus hosts in the tropical oceans.


Subject(s)
Electron Transport/genetics , Myoviridae/genetics , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics , Prochlorococcus/genetics , Prochlorococcus/virology , Atlantic Ocean , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genes, Viral/genetics , Genome, Viral/genetics , Myoviridae/classification , Myoviridae/pathogenicity , Myoviridae/ultrastructure , Pacific Ocean , Photosynthesis/genetics , Phylogeny , Viral Proteins/genetics
19.
Nat Commun ; 8: 15885, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28631733

ABSTRACT

Photosynthesis is a unique process that allows independent colonization of the land by plants and of the oceans by phytoplankton. Although the photosynthesis process is well understood in plants, we are still unlocking the mechanisms evolved by phytoplankton to achieve extremely efficient photosynthesis. Here, we combine biochemical, structural and in vivo physiological studies to unravel the structure of the plastid in diatoms, prominent marine eukaryotes. Biochemical and immunolocalization analyses reveal segregation of photosynthetic complexes in the loosely stacked thylakoid membranes typical of diatoms. Separation of photosystems within subdomains minimizes their physical contacts, as required for improved light utilization. Chloroplast 3D reconstruction and in vivo spectroscopy show that these subdomains are interconnected, ensuring fast equilibration of electron carriers for efficient optimum photosynthesis. Thus, diatoms and plants have converged towards a similar functional distribution of the photosystems although via different thylakoid architectures, which likely evolved independently in the land and the ocean.


Subject(s)
Diatoms/physiology , Photosynthesis/physiology , Plastids/metabolism , Thylakoids/metabolism , Chloroplasts/metabolism , Diatoms/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism
20.
J Exp Bot ; 67(13): 3939-51, 2016 06.
Article in English | MEDLINE | ID: mdl-27225826

ABSTRACT

Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.


Subject(s)
Algal Proteins/genetics , Diatoms/genetics , Gene Expression Regulation , Light-Harvesting Protein Complexes/genetics , Phytoplankton/genetics , Signal Transduction , Algal Proteins/metabolism , Diatoms/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Phytoplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...