Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Antiviral Res ; 204: 105364, 2022 08.
Article in English | MEDLINE | ID: mdl-35716929

ABSTRACT

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Subject(s)
Antiviral Agents , Arenavirus , Exoribonucleases , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Arenavirus/drug effects , Chlorocebus aethiops , Exoribonucleases/antagonists & inhibitors , Fluorescence Polarization , SARS-CoV-2/drug effects , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors
2.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Article in English | MEDLINE | ID: mdl-34862481

ABSTRACT

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Exoribonucleases/metabolism , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , A549 Cells , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2/enzymology , Virus Replication/drug effects
3.
Eur J Med Chem ; 226: 113835, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34509860

ABSTRACT

The Hippo pathway is involved in organ size control and tissue homeostasis by regulating cell growth, proliferation and apoptosis. It controls the phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) in order to control their nuclear import and their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several cancers making YAP/TAZ-TEAD interaction a new emerging anti-cancer target. We report the synthesis of a set of trisubstituted pyrazoles which bind to hTEAD2 at the interface 2 revealing for the first time a cryptic pocket created by the movement of the phenol ring of Y382. Compound 6 disrupts YAP/TAZ-TEAD interaction in HEK293T cells and inhibits TEAD target genes and cell proliferation in MDA-MB-231 cells. Compound 6 is therefore the first inhibitor of YAP/TAZ-TEAD targeting interface 2. This molecule could serve with other pan-TEAD inhibitors such as interface 3 ligands, for the delineation of the relative importance of VGLL vs YAP/TAZ in a given cellular model.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Drug Discovery , Pyrazoles/pharmacology , TEA Domain Transcription Factors/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Transcriptional Coactivator with PDZ-Binding Motif Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Ligands , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , TEA Domain Transcription Factors/metabolism , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
4.
ChemMedChem ; 16(18): 2823-2844, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34032019

ABSTRACT

Starting from our previously reported hit, a series of 1,5-diaryl-1,2,3-triazole-4-carbohydrazones were synthesized and evaluated as inhibitors of the YAP/TAZ-TEAD complex. Their binding to hTEAD2 was confirmed by nanodifferential scanning fluorimetry, and some of the compounds were also found to moderately disrupt the YAP-TEAD interaction, as assessed by a fluorescence polarization assay. A TEAD luciferase gene reporter assay performed in HEK293T cells and RTqPCR measurements in MDA-MB231 cells showed that these compounds inhibit YAP/TAZ-TEAD activity to cells in the micromolar range. In spite of the cytotoxic effects displayed by some of the compounds of this series, they are still good starting points and can be suitably modified into an effective and viable YAP-TEAD disruptor in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Hydrazones/pharmacology , TEA Domain Transcription Factors/antagonists & inhibitors , Transcriptional Coactivator with PDZ-Binding Motif Proteins/antagonists & inhibitors , Triazoles/pharmacology , YAP-Signaling Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Molecular Structure , Structure-Activity Relationship , TEA Domain Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Triazoles/chemical synthesis , Triazoles/chemistry , YAP-Signaling Proteins/metabolism
5.
Antiviral Res ; 162: 79-89, 2019 02.
Article in English | MEDLINE | ID: mdl-30557576

ABSTRACT

Arenaviridae is a viral family whose members are associated with rodent-transmitted infections to humans responsible of severe diseases. The current lack of a vaccine and limited therapeutic options make the development of efficacious drugs of high priority. The cap-snatching mechanism of transcription of Arenavirus performed by the endonuclease domain of the L-protein is unique and essential, so we developed a drug design program targeting the endonuclease activity of the prototypic Lymphocytic ChorioMeningitis Virus. Since the endonuclease activity is metal ion dependent, we designed a library of compounds bearing chelating motifs (diketo acids, polyphenols, and N-hydroxyisoquinoline-1,3-diones) able to block the catalytic center through the chelation of the critical metal ions, resulting in a functional impairment. We pre-screened 59 compounds by Differential Scanning Fluorimetry. Then, we characterized the binding affinity by Microscale Thermophoresis and evaluated selected compounds in in vitro and in cellula assays. We found several potent binders and inhibitors of the endonuclease activity. This study validates the proof of concept that the endonuclease domain of Arenavirus can be used as a target for anti-arena-viral drug discovery and that both diketo acids and N-hydroxyisoquinoline-1,3-diones can be considered further as potential metal-chelating pharmacophores.


Subject(s)
Chelating Agents/pharmacology , Endonucleases/antagonists & inhibitors , Lymphocytic choriomeningitis virus/drug effects , Lymphocytic choriomeningitis virus/enzymology , Viral Proteins/antagonists & inhibitors , High-Throughput Screening Assays , Lymphocytic choriomeningitis virus/physiology , Polyphenols/pharmacology , Small Molecule Libraries , Virus Replication/drug effects
6.
Cancers (Basel) ; 10(5)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738494

ABSTRACT

Intrinsically disordered protein YAP (yes-associated protein) interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain) creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50⁻71-hTEAD1209⁻426 complex (PDB 3KYS) published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds) was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis) and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells). A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

7.
J Med Chem ; 61(12): 5057-5072, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29251924

ABSTRACT

Transcriptional enhanced associate domain (TEAD) proteins are the downstream effectors of the Hippo signaling pathway that regulate cell proliferation and stem cell functions. TEADs are unable to activate transcription and require the help of coactivators such as YAP, TAZ, VgLL, and p160 proteins. The expression of TEAD family is up-regulated in many cancer types including gastric, colorectal, breast, and prostate cancers, which is correlated with poor survival in patients. Pharmacological modulators of TEADs could therefore find application in cancer treatment and regenerative medicine. In this review, we present the very recent available structures of TEADs with or without coactivators or inhibitors and discuss the potential therapeutic application of their ligands.


Subject(s)
DNA-Binding Proteins/chemistry , Molecular Targeted Therapy/methods , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hippo Signaling Pathway , Humans , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscle Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Conformation , Protein Domains , Protein Serine-Threonine Kinases/metabolism , Proteins/agonists , Proteins/antagonists & inhibitors , Proteins/chemistry , Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Verteporfin/analogs & derivatives
8.
Antiviral Res ; 143: 205-217, 2017 07.
Article in English | MEDLINE | ID: mdl-28450058

ABSTRACT

We previously reported low sensitivity of the hepatitis B virus (HBV) ribonuclease H (RNaseH) enzyme to inhibition by N-hydroxyisoquinolinedione (HID) compounds. Subsequently, our biochemical RNaseH assay was found to have a high false negative rate for predicting HBV replication inhibition, leading to underestimation of the number of HIDs that inhibit HBV replication. Here, 39 HID compounds and structurally related polyoxygenated heterocycles (POH), N-hydroxypyridinediones (HPD), and flutimides were screened for inhibition of HBV replication in vitro. Inhibiting the HBV RNaseH preferentially blocks synthesis of the positive-polarity DNA strand and causes accumulation of RNA:DNA heteroduplexes. Eleven HIDs and one HPD preferentially inhibited HBV positive-polarity DNA strand accumulation. EC50s ranged from 0.69 µM to 19 µM with therapeutic indices from 2.4 to 71. Neither the HIDs nor the HPD had an effect on the ability of the polymerase to elongate DNA strands in capsids. HBV RNaseH inhibition by the HIDs was confirmed with an improved RNaseH assay and by detecting accumulation RNA:DNA heteroduplexes in HBV capsids from cells treated with a representative HID. Therefore, the HID scaffold is more promising for anti-HBV drug discovery than we originally reported, and the HPD scaffold may hold potential for antiviral development. The preliminary structure-activity relationship will guide optimization of the HID/HPDs as HBV inhibitors.


Subject(s)
Antiviral Agents/antagonists & inhibitors , Antiviral Agents/chemistry , Hepatitis B virus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/administration & dosage , Capsid Proteins/genetics , Cell Line, Tumor , Chlorocebus aethiops , DNA Replication/drug effects , DNA, Viral/drug effects , Drug Discovery , Drug Evaluation, Preclinical , Hepatitis B/virology , Hepatitis B virus/enzymology , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Microbial Sensitivity Tests , Piperazines/pharmacology , Ribonuclease H/drug effects , Structure-Activity Relationship , Vero Cells
9.
ChemMedChem ; 12(12): 954-961, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28334506

ABSTRACT

Porphyrin derivatives, in particular verteporfin (VP), a photosensitizer initially designed for cancer therapy, have been identified as inhibitors of the YAP-TEAD interaction and transcriptional activity. Herein we report the efficient convergent synthesis of the dipyrrin half of protoporphyrin IX dimethyl ester (PPIX-DME), in which the sensitive vinyl group was created at the final stage by a dehydroiodination reaction. Two other dipyrrin derivatives were synthesized, including dipyrrin 19 [(Z)-2-((3,5-dimethyl-4-vinyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-4-vinyl-1H-pyrrole], containing two vinyl groups. We found that VP and dipyrrin 19 showed significant inhibitory effects on TEAD transcriptional activity in MDA-MB-231 human breast cancer cells, whereas other compounds did not show significant changes. In addition, we observed a marked decrease in both YAP and TAZ levels following VP treatment, whereas dipyrrin 19 treatment primarily decreased the levels of YAP and receptor kinase AXL, a downstream target of YAP. Together, our data suggest that, due to their chemical structures, porphyrin- and dipyrrin-related derivatives can directly target YAP and/or TAZ proteins and inhibit TEAD transcriptional activity.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Phosphoproteins/antagonists & inhibitors , Photosensitizing Agents/pharmacology , Porphyrins/chemical synthesis , Porphyrins/pharmacology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Acyltransferases , Cell Line, Tumor , Hippo Signaling Pathway , Humans , Molecular Structure , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Structure-Activity Relationship , Verteporfin , YAP-Signaling Proteins
10.
Eur J Med Chem ; 117: 256-68, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27105029

ABSTRACT

Herein, we report further insight into the biological activities displayed by the 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) scaffold. Previous studies have evidenced the marked fruitful effect of substitution of this two-metal binding pharmacophore at position 4 by phenyl and benzyl carboxamido chains. Strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range with micromolar (even down to low nanomolar) anti-HIV activities were obtained. Keeping this essential 4-carboxamido function, we investigated the influence of the replacement of phenyl and benzyl groups by various alkyl chains. This study shows that the recurrent halogenobenzyl pharmacophore found in the INSTIs can be efficiently replaced by an n-alkyl group. With an optimal length of six carbons, we observed a biological profile and a high barrier to resistance equivalent to those of a previously reported hit compound bearing a 4-fluorobenzyl group.


Subject(s)
HIV Integrase Inhibitors/chemistry , Isoquinolines/chemistry , Alkylation , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Cell Line , Drug Resistance, Viral/drug effects , HIV Integrase Inhibitors/pharmacology , Humans , Isoquinolines/pharmacology , Structure-Activity Relationship
11.
Curr Med Chem ; 23(11): 1171-84, 2016.
Article in English | MEDLINE | ID: mdl-26980565

ABSTRACT

BACKGROUND: Verteporfin is a porphyrinic photosensitizer clinically used for the photodynamic treatment of age-related macular degeneration. It has been identified almost simultaneously as a YAP/TEAD and an autophagosome inhibitor. Over the last few years, YAP (TAZ), the downstream effectors of the Hippo pathway, have emerged as promising anticancer targets, as shown by several experimental lines of evidence, showing the overproduction of YAP in several cancers. However, YAP was also found to be closely connected to autophagy, mitochondria and reactive oxygen/nitrogen species. We herein, review the recent studies where VP was used without photoactivation as a YAP/TEAD inhibitor or protein oligomerization promoter, focusing on its effects on the YAP/TEAD gene targets and other biomarkers related to autophagy. RESULTS: Since the identification of VP as YAP/TEAD inhibitor, several in vitro and in vivo studies have revealed the new potential of this molecule in different cancers, where YAP is overexpressed. However, detailed structural information about its interaction with YAP is still lacking. Concomitantly, VP was identified as autophagosome inhibitor by promoting oligomerization of p62. Moreover, VP proves to be tumor-selective proteotoxic (by oligomerization of p62, STAT3) in colorectal cancer. Knowledge on the biological properties of the only YAP inhibitor available to date is vital for its pharmacological use on cellular and animal models. CONCLUSION: VP is a multi-target drug interacting with several proteins implicated in major cellular processes. Although this does not impact its clinical use, VP does not seem to be the ideal drug for pharmacological inhibitions of YAP/TEAD.


Subject(s)
Macular Degeneration/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Animals , Humans , Verteporfin
12.
Expert Opin Drug Discov ; 10(11): 1243-53, 2015.
Article in English | MEDLINE | ID: mdl-26517818

ABSTRACT

INTRODUCTION: Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Dolutegravir is a therapy that is unique in its ability to evade HIV drug resistance in treatment-naïve patients. AREAS COVERED: This review starts by providing a brief summary of the history of HIV-1 IN inhibitors. The authors follow this with details of the discovery and preclinical and clinical developments of dolutegravir. Finally, the authors provide details of dolutegravir's post-launch including the launch of the combination pill of dolutegravir, abacavir and lamivudine in August 2014. EXPERT OPINION: The launch of raltegravir, the first IN inhibitor from Merck & Co., has created new hopes for the patient. Indeed, pharmaceutical companies have not lost courage by attempting to address the major drawbacks of this first-in-class molecule. And while the drug elvitegravir has been inserted into a four-drug combination pill providing a once-daily dosing alternative, dolutegravir has demonstrated superiority in terms of its efficacy and resistance.


Subject(s)
HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Animals , Dideoxynucleosides/administration & dosage , Drug Combinations , Drug Design , Drug Evaluation, Preclinical/methods , Drug Resistance, Viral , HIV Infections/virology , HIV Integrase Inhibitors/administration & dosage , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , Lamivudine/administration & dosage , Oxazines , Piperazines , Pyridones
13.
Antiviral Res ; 108: 48-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24858512

ABSTRACT

Nucleos(t)ide analog drugs profoundly suppress Hepatitis B virus (HBV) replication but rarely cure the infection, so therapy is usually life-long. The nucleos(t)ide analogs inhibit the viral DNA polymerase and often push HBV to the brink of extinction, so it may be possible to eradicate HBV by suppressing HBV replication further. The HBV ribonuclease H (RNaseH) is a logical new drug target because it is the second of only two viral enzymes essential for viral replication. We recently developed a low throughput screening pipeline for inhibitors of the HBV RNaseH and viral replication. Here, we screened a series of twenty-three nitrogen-based polyoxygenated heterocycles including sixteen 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives for anti-HBV RNaseH activity. Nine compounds inhibited the HBV RNaseH, but activity was marginal for eight of them. Compound #1 [2-hydroxyisoquinoline-1,3(2H,4H)-dione, HID] was the best hit with an IC50 of 28.1µM and an EC50 of 4.2µM. It preferentially suppressed accumulation of the viral plus-polarity DNA strand in replication inhibition assays, indicating that replication was blocked due to suppression of HBV RNaseH activity. It had a CC50 of 75µM, yielding a therapeutic index of ∼18. The EC50 value was 7-fold lower than the IC50, possibly due to cellular retention or metabolism of the compound, or higher affinity for the full-length enzyme than the recombinant form used for screening. These data indicate that the 2-hydroxyisoquinoline-1,3(2H,4H)-diones will have different structure-activity relationships for the HBV and HIV RNaseHs. Therefore, HID compounds may provide a foundation for development of more effective RNaseH inhibitors of HBV replication.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Hepatitis B virus/enzymology , Isoquinolines/pharmacology , Ribonuclease H/antagonists & inhibitors , Cell Line , Hepatitis B virus/physiology , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Virus Replication/drug effects
14.
J Med Chem ; 57(11): 4640-60, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24793360

ABSTRACT

We report herein further insight into the biological activities displayed by a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs). Substitution of the N-hydroxyimide two-metal binding pharmacophore at position 4 by carboxamido side chains was previously shown by us to be fruitful for this scaffold, since strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range associated with low micromolar anti-HIV activities were obtained. We investigated the influence of substitution at position 7 on biological activity. Introduction of electron-withdrawing functional groups such as the nitro moiety at position 7 led to a noticeable improvement of antiviral activity, down to low nanomolar anti-HIV potencies, with advantageous therapeutic indexes going close to those of the clinically used raltegravir and retained potencies against a panel of IN mutants.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV-1/drug effects , Isoquinolines/chemical synthesis , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Cell Line, Tumor , Cytochrome P-450 CYP2C9 , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Resistance, Viral , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV-1/genetics , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Docking Simulation , Mutation , Structure-Activity Relationship
15.
ACS Chem Biol ; 8(6): 1187-94, 2013.
Article in English | MEDLINE | ID: mdl-23517458

ABSTRACT

Clinical HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) potently inhibit viral replication with a dramatic drop in viral load. However, the emergence of resistance to these drugs underscores the need to develop next-generation IN catalytic site inhibitors with improved resistance profiles. Here, we present a novel candidate IN inhibitor, MB-76, a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) derivative. MB-76 potently blocks HIV integration and is active against a panel of wild-type as well as raltegravir-resistant HIV-1 variants. The lack of cross-resistance with other INSTIs and the absence of resistance selection in cell culture indicate the potential of HID derivatives compared to previous INSTIs. A crystal structure of MB-76 bound to the wild-type prototype foamy virus intasome reveals an overall binding mode similar to that of INSTIs. Its compact scaffold displays all three Mg(2+) chelating oxygen atoms from a single ring, ensuring that the only direct contacts with IN are the invariant P214 and Q215 residues of PFV IN (P145 and Q146 for HIV-1 IN, respectively), which may partially explain the difficulty of selecting replicating resistant variants. Moreover, the extended, dolutegravir-like linker connecting the MB-76 metal chelating core and p-fluorobenzyl group can provide additional flexibility in the perturbed active sites of raltegravir-resistant INs. The compound identified represents a potential candidate for further (pre)clinical development as next-generation HIV IN catalytic site inhibitor.


Subject(s)
HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/enzymology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Catalytic Domain/drug effects , Cell Line , HIV Infections/drug therapy , HIV Infections/enzymology , HIV Infections/virology , HIV-1/drug effects , Humans , Models, Molecular
16.
ACS Med Chem Lett ; 4(7): 606-11, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-24900718

ABSTRACT

A series of 2-hydroxy-1,3-dioxoisoquinoline-4-carboxamides featuring an N-hydroxyimide chelating functionality was evaluated for their inhibitory properties against human immunodeficiency virus type 1 integrase (HIV-1 IN). Several derivatives displayed low nanomolar IC50 values comparable to that of the clinically used raltegravir. A marked effect of one compound on both primary IN-catalyzed reactions, strand transfer (ST), and 3' processing (3'-P), emphasizes a novel IN inhibition mechanism establishing it as a potential new generation IN inhibitor. Substitution of the 2-hydroxyisoquinoline-1,3-dione scaffold at position 4 by carboxamido chains was beneficial for antiviral activity since reproducible low micromolar anti-HIV activities were obtained for the first time within this scaffold.

17.
Bioorg Med Chem Lett ; 23(2): 574-8, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23228470

ABSTRACT

Caffeic acid derivatives are increasingly regarded as potential oncoprotective that could inhibit both the initiation and progression of cancer. Here we have synthesized seven 1-arylnaphthalene lignans and related compounds and tested their impact on breast cancer cell growth in tissue culture. The product of the oxidative dimerization of methyl caffeate, 1-phenylnaphthalene lignan, was found to induce a strong decrease in breast cancer cell number (IC(50) ~1 µM) and was selected for further investigation. Flow cytometry analysis revealed a decrease in cell proliferation and an increase in apoptosis in both MCF-7 and MDA-MB-231 breast cancer cell lines that are representative of the two main categories of breast tumors. The 3,4-dihydroxyphenyl group probably induced the biological activity, as the control compounds lacking it had no effect on breast cancer cells. Together, our data indicate that the oxidative dimerization product of methyl caffeate can inhibit breast cancer cell growth at a concentration adequate for pharmacological use.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Female , Flow Cytometry , Humans , Inhibitory Concentration 50 , Molecular Structure , Oxidation-Reduction
18.
Bioorg Med Chem Lett ; 22(12): 3988-92, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607675

ABSTRACT

We report herein the synthesis of a series of 3-hydroxyquinolin-2(1H)-one derivatives. Esters and amide groups were introduced at position 4 of the basis scaffold and some modulations of the benzenic moiety were performed. Most compounds presented selective inhibitory properties in the 10-20 µM range against HIV-1 reverse transcriptase associated ribonuclease H activity, without affecting the integrase and reverse transcriptase DNA polymerase activities. Unfortunately all tested compounds exhibited high cellular cytotoxicity in cell culture which limited their applications as antiviral agents.


Subject(s)
Anti-HIV Agents/chemical synthesis , HIV Reverse Transcriptase/antagonists & inhibitors , Quinolones/chemical synthesis , Reverse Transcriptase Inhibitors/chemical synthesis , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Cell Line , Cell Survival/drug effects , Fluorescence , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Magnesium/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Quinolones/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Spectrometry, Fluorescence , Structure-Activity Relationship
19.
J Med Chem ; 54(6): 1812-24, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366258

ABSTRACT

2-Hydroxyisoquinoline-1,3(2H,4H)-dione was recently discovered as a scaffold for the inhibition of HIV-1 integrase and the ribonuclease H function of HIV-1 reverse transcriptase. First, we investigate its interaction with Mg(2+) and Mn(2+) using different spectroscopic techniques and report that 2-hydroxyisoquinoline-1,3(2H,4H)-dione forms a 1:1 complex with Mg(2+) but a 1:2 complex with Mn(2+). The complex formation requires enolization of the ligand. ESR spectroscopy shows a redox reaction between the ligand and Mn(2+) producing superoxide anions. Second, 2-hydroxyisoquinoline-1,3(2H,4H)-dione, its magnesium complex, and its 4-methyl and 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-diones were tested as inhibitors of HIV-1 integrase, reverse transcriptase ribonuclease H, and DNA polymerase functions. Their antiviral activities were evaluated and 2-hydroxy-4-methoxycarbonyl-isoquinoline-1,3(2H,4H)-dione was found to inhibit the viral replication of HIV-1 in MT-4 cells. Cross-resistance was measured for this compound on three different viral strains. Experimental data suggest that the antiviral activity of 2-hydroxy-4-methoxycarbonylisoquinoline-1,3(2H,4H)-dione is probably due to the RNase H inhibition.


Subject(s)
Chelating Agents/chemical synthesis , Coordination Complexes/chemical synthesis , HIV Integrase Inhibitors/chemical synthesis , HIV-1/drug effects , Isoquinolines/chemical synthesis , Magnesium , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Catalytic Domain , Cell Line , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Resistance, Viral , Electron Spin Resonance Spectroscopy , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV-1/enzymology , Humans , Isomerism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Magnetic Resonance Spectroscopy , Ribonuclease H, Human Immunodeficiency Virus/metabolism , Spectrophotometry, Infrared , Structure-Activity Relationship , Virus Replication/drug effects
20.
Eur J Med Chem ; 46(2): 535-46, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21185110

ABSTRACT

We report herein the synthesis of a series of fifteen 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives. Alkyl and arylalkyl groups were introduced on position 4 of the basis scaffold. All the compounds presented poor inhibitory properties against HIV-1 reverse transcriptase ribonuclease H (RNase H). Four compounds inhibited HIV-1 integrase at a low micromolar level. A docking study using the later crystallographic data available for PFV integrase allowed us to explain the slightly improved integrase inhibitory activities of 4-pentyl and 4-(3-phenylpropyl)-2-hydroxyisoquinoline-1,3(2H,4H)-diones, when compared to the basis scaffold. Physicochemical studies were consistent with 1:1 and 1:2 (metal/ligand) stoichiometries of the magnesium complexes in solution. Unfortunately all tested compounds exhibited high cellular cytotoxicity in cell culture which limited their applications as antiviral agents. However these identified integrase inhibitors provide a very good basis for the development of new hits.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV Reverse Transcriptase/antagonists & inhibitors , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Alkylation , Crystallography, X-Ray , HIV Integrase Inhibitors/chemistry , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...