Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
3.
Am J Pathol ; 193(11): 1694-1705, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37330004

ABSTRACT

CreTrp1 mice are widely used for conditional retinal pigment epithelium (RPE) gene function studies. Like other Cre/LoxP models, phenotypes in CreTrp1 mice can be affected by Cre-mediated cellular toxicity, leading to RPE dysfunction, altered morphology and atrophy, activation of innate immunity, and consequent impairment of photoreceptor function. These effects are common among the age-related alterations of RPE that feature in early/intermediate forms of age-related macular degeneration. This article characterizes Cre-mediated pathology in the CreTrp1 line to elucidate the impact of RPE degeneration on both developmental and pathologic choroidal neovascularization. Nonredundant roles of the two major components of the hypoxia-inducible factor (HIF) family of transcription regulators, HIF1α and HIF2α, were identified. Genetic ablation of Hif1a protected against Cre-induced degeneration of RPE and choroid, whereas ablation of Hif2a exacerbated this degeneration. Furthermore, HIF1α deficiency protected CreTrp1 mice against laser-induced choroidal neovascularization, whereas HIF2α deficiency exacerbated the phenotype. Cre-mediated degeneration of the RPE in CreTrp1 mice offers an opportunity to investigate the impact of hypoxia signaling in the context of RPE degeneration. These findings indicate that HIF1α promotes Cre recombinase-mediated RPE degeneration and laser-induced choroidal neovascularization, whereas HIF2α is protective.

4.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36121394

ABSTRACT

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Subject(s)
Actomyosin , Myotonin-Protein Kinase , Phagocytosis , Actins/metabolism , Actomyosin/metabolism , Myosin Type II/metabolism , Myotonin-Protein Kinase/metabolism , Phagocytosis/physiology , Protein-Tyrosine Kinases , Receptors, Fc , c-Mer Tyrosine Kinase/metabolism
5.
Stem Cell Reports ; 17(4): 775-788, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35334217

ABSTRACT

The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders.


Subject(s)
Organoids , Pluripotent Stem Cells , Antioxidants/pharmacology , Dietary Supplements , Humans , Lipids , Retina , Retinal Cone Photoreceptor Cells
6.
Cell Rep ; 35(3): 109022, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882303

ABSTRACT

Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/therapy , Organoids/transplantation , Recovery of Function/physiology , Retinal Cone Photoreceptor Cells/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Transgenic , Mycotoxins/genetics , Mycotoxins/metabolism , Organoids/cytology , Organoids/metabolism , Peripherins/genetics , Peripherins/metabolism , Photic Stimulation , Primary Cell Culture , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Retinal Bipolar Cells/cytology , Retinal Bipolar Cells/metabolism , Retinal Cone Photoreceptor Cells/cytology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Synapses/metabolism , Transplantation, Heterologous , Vision, Ocular/physiology
7.
Br J Ophthalmol ; 105(2): 151-157, 2021 02.
Article in English | MEDLINE | ID: mdl-32269060

ABSTRACT

Age-related macular degeneration (AMD) is one of the leading causes of irreversible blindness in the developed world. Antivascular endothelial growth factor therapy has transformed the management and outcome of neovascular AMD (nAMD), although the need for repeated intravitreal injections-even lifelong-and the related complications, high drug costs, frequent clinic visits and repeated imaging have resulted in an enormous burden both to healthcare systems and patients. The application of gene therapy approaches for sustained delivery of a range of antiangiogenic proteins has the promise of helping to address these aforementioned challenges. A number of early phase clinical trials of gene therapy in nAMD have provided encouraging results, with many more ongoing or anticipated. There remain significant areas of controversy, including regarding the optimal treatment targets, routes of administration and potential safety concerns. In this review we aim to provide an update of the current status of gene therapy for nAMD and briefly discuss future prospects.


Subject(s)
Choroidal Neovascularization/therapy , Genetic Therapy/methods , Genetic Therapy/trends , Wet Macular Degeneration/therapy , Clinical Trials as Topic , Forecasting , Humans
8.
Transl Vis Sci Technol ; 9(10): 5, 2020 09.
Article in English | MEDLINE | ID: mdl-32953245

ABSTRACT

Purpose: To validate a vision-guided mobility assessment for individuals affected by RPE65-associated retinal dystrophy (RPE65-RD). Methods: In this comparative cross-sectional study, 29 subjects, comprising 19 subjects with RPE65-RD and 10 normally-sighted subjects undertook three assessments of mobility: following a straight line, navigating a simple maze, and stepping over a sidewalk "kerb." Performance was quantified as the time taken to complete each assessment, number of errors made, walking speed, and percent preferred walking speed, for each assessment. Subjects also undertook assessments of visual acuity, contrast sensitivity, full-field static perimetry, and age-appropriate quality of life questionnaires. To identify the most relevant metric to quantify vision-guided mobility, we investigated repeatability, as well as convergent, discriminant, and criterion validity. We also measured the effect of illumination on mobility. Results: Walking speed through the maze assessment best discriminated between RPE65-RD and normally-sighted subjects, with both convergent and discriminant validity. Walking speed also approached statistical significance when assessed for criterion validity (P = 0.052). Subjects with RPE65-RD had quantifiably poorer mobility at lower illumination levels. A relatively small mean difference (-0.09 m/s) was identified in comparison to a relatively large repeatability coefficient (1.10 m/s). Conclusions: We describe a novel, quantifiable, repeatable, and valid assessment of mobility designed specifically for subjects with RPE65-RD. The assessment is sensitive to the visual impairment of individuals with RPE65-RD in low illumination, identifies the known phenotypic heterogeneity and will furthermore provide an important outcome measure for RPE65-RD. Translational Relevance: This assessment of vision-guided mobility, validated in a dedicated cohort of subjects with RPE65-RD, is a relevant and quantifiable outcome measure for RPE65-RD.


Subject(s)
Quality of Life , Retinal Dystrophies , Cross-Sectional Studies , Humans , Retinal Dystrophies/diagnosis , Walking , cis-trans-Isomerases
9.
Transl Vis Sci Technol ; 9(7): 2, 2020 06.
Article in English | MEDLINE | ID: mdl-32832209

ABSTRACT

Major advances in the study of inherited retinal diseases (IRDs) have placed efforts to develop treatments for these blinding conditions at the forefront of the emerging field of precision medicine. As a result, the growth of clinical trials for IRDs has increased rapidly over the past decade and is expected to further accelerate as more therapeutic possibilities emerge and qualified participants are identified. Although guided by established principles, these specialized trials, requiring analysis of novel outcome measures and endpoints in small patient populations, present multiple challenges relative to study design and ethical considerations. This position paper reviews recent accomplishments and existing challenges in clinical trials for IRDs and presents a set of recommendations aimed at rapidly advancing future progress. The goal is to stimulate discussions among researchers, funding agencies, industry, and policy makers that will further the design, conduct, and analysis of clinical trials needed to accelerate the approval of effective treatments for IRDs, while promoting advocacy and ensuring patient safety.


Subject(s)
Retinal Diseases , Humans , Precision Medicine , Retina , Retinal Diseases/drug therapy
10.
JAMA Ophthalmol ; 138(7): 725-730, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32379288

ABSTRACT

Importance: The value of facedown positioning following surgery for large full-thickness macular holes is unknown. Objective: To determine whether advice to position facedown postoperatively improves the outcome for large macular holes. Design, Setting, and Participants: This randomized, parallel group superiority trial with 1:1 randomization stratified by site with 3 months' follow-up was conducted at 9 sites across the United Kingdom and included participants with an idiopathic full-thickness macular hole of at least 400 µm minimum linear diameter and a duration of fewer than 12 months. All participants had vitrectomy surgery with peeling of the internal limiting membrane and injection of perfluoropropane (14%) gas, with or without simultaneous surgery for cataract. Interventions: Following surgery, participants were randomly advised to position either facedown or face forward for 8 hours daily for 5 days. Main Outcomes and Measures: The primary outcome was closure of the macular hole determined 3 months following surgery by masked optical coherence tomography evaluation. Secondary outcome measures at 3 months were visual acuity, participant-reported experience of positioning, and quality of life measured by the National Eye Institute Visual Function Questionnaire 25. Results: A total of 185 participants (45 men [24.3%]; 156 white [84.3%]; 9 black [4.9%]; 10 Asian [5.4%]; median age, 69 years [interquartile range, 64-73 years]) were randomized. Macular hole closure was observed in 90 (85.6%) who were advised to position face forward and 88 (95.5%) advised to position facedown (adjusted odds ratio, 3.15; 95% CI, 0.87-11.41; P = .08). The mean (SD) improvement in best-corrected visual acuity at 3 months was 0.34 (0.69) logMAR (equivalent to 1 Snellen line) in the face-forward group and 0.57 (0.42) logMAR (equivalent to 3 Snellen lines) in the facedown group (adjusted mean difference, 0.22 [95 % CI, 0.05-0.38]; equivalent to 2 Snellen lines); 95% CI, 0.05-0.38; P = .01). The median National Eye Institute Visual Function Questionnaire 25 score was 89 (interquartile range, 76-94) in the facedown group and 87 (interquartile range, 73-93) in the face-forward group (mean [SD] change on a logistic scale, 0.08 [0.26] face forward and 0.11 [0.25] facedown; adjusted mean [SD] difference on a logistic scale, 0.02; 95% CI, -0.03 to 0.07; P = .41). Conclusions and Relevance: The results do not prove that facedown positioning following surgery is more likely to close large macular holes compared with facing forward but do support the possibility that visual acuity outcomes may be superior. Trial Registration: Isrctn.org Identifier: 12410596.


Subject(s)
Macula Lutea/pathology , Postoperative Care/methods , Prone Position , Quality of Life , Retinal Perforations/surgery , Visual Acuity , Vitrectomy/methods , Aged , Female , Humans , Male , Middle Aged , Retinal Perforations/diagnosis , Tomography, Optical Coherence , Treatment Outcome
11.
Mol Pharm ; 17(7): 2390-2397, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32437164

ABSTRACT

Opticin is an endogenous vitreous glycoprotein that may have therapeutic potential as it has been shown that supranormal concentrations suppress preretinal neovascularization. Herein we investigated the pharmacokinetics of opticin following intravitreal injection in rabbits. To measure simultaneously concentrations of human and rabbit opticin, a selected reaction monitoring mass spectrometry assay was developed. The mean concentration of endogenous rabbit opticin in 7 uninjected eyes was measured and found to be 19.2 nM or 0.62 µg/mL. When the vitreous was separated by centrifugation into a supernatant and collagen-containing pellet, 94% of the rabbit opticin was in the supernatant. Intravitreal injection of human opticin (40 µg) into both eyes of rabbits was followed by enucleation at 5, 24, and 72 h and 7, 14, and 28 days postinjection (n = 6 at each time point) and measurement of vitreous human and rabbit opticin concentrations in the supernatant and collagen-containing pellet following centrifugation. The volume of distribution of human opticin was calculated to be 3.31 mL, and the vitreous half-life was 4.2 days. Assuming that rabbit and human opticin are cleared from rabbit vitreous at the same rate, opticin is secreted into the vitreous at a rate of 0.14 µg/day. We conclude that intravitreally injected opticin has a vitreous half-life that is similar to currently available antiangiogenic therapeutics. While opticin was first identified bound to vitreous collagen fibrils, here we demonstrate that >90% of endogenous opticin is not bound to collagen. Endogenous opticin is secreted by the nonpigmented ciliary epithelium into the rabbit vitreous at a remarkably high rate, and the turnover in vitreous is approximately 15% per day.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Extracellular Matrix Proteins/administration & dosage , Extracellular Matrix Proteins/pharmacokinetics , Intravitreal Injections/methods , Proteoglycans/administration & dosage , Proteoglycans/pharmacokinetics , Angiogenesis Inhibitors/biosynthesis , Animals , Collagen/metabolism , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/metabolism , Half-Life , Humans , Male , Mass Spectrometry/methods , Neovascularization, Physiologic/drug effects , Proteoglycans/biosynthesis , Proteoglycans/metabolism , Rabbits , Retina/metabolism , Vitreous Body/metabolism
12.
Invest Ophthalmol Vis Sci ; 61(4): 47, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32347917

ABSTRACT

Purpose: RPE65-associated retinal dystrophy (RPE65-RD) is an early onset, progressive, severe retinal dystrophy. We sought to characterize the natural history of retinal degeneration in affected individuals. Methods: We performed cross-sectional and longitudinal quantitative and qualitative assessments of retinal architecture in RPE65-RD using spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) imaging. Twenty-six subjects (mean age, 14.8 years, range, 5-24 years) with RPE65-RD underwent SD-OCT and FAF imaging, of whom 14 subjects were followed up over time. Foveal thickness (FT), outer nuclear layer thickness (ONLT), ellipsoid zone width (EZW), and ellipsoid zone area (EZA) were calculated where possible. These were correlated with age, best corrected visual acuity (BCVA), and central 30° retinal sensitivity (V30). Intra-observer agreement, test-retest repeatability, and interocular symmetry were also investigated. Results: We identified structural interocular symmetry, the presence of autofluorescence in 46% (12/26) of subjects, and the presence of foveal hypoplasia (associated with significantly worse BCVA) in 50% of subjects. EZW and EZA were measurable in 67% (35/52) and 37% (19/52) of eyes, respectively, with both demonstrating good agreement on repeated measurement. The annual rate of progression using EZW was -300.63 µm/year, and -1.17 mm2/year in EZA. EZW was found to have a statistically significant correlation with BCVA and V30. Conclusions: We identified the presence of autofluorescence in half of our subjects, with foveal hypoplasia also noted in half of our cohort. EZW, and to a lesser extent EZA, were robust measures of retinal degeneration and represent valuable metrics to determine the impact of intervention. (ClinicalTrials.gov number NCT02714816.).


Subject(s)
Eye Diseases, Hereditary/diagnostic imaging , Eye Diseases, Hereditary/genetics , Genetic Predisposition to Disease , Retinal Dystrophies/diagnostic imaging , Retinal Dystrophies/genetics , Tomography, Optical Coherence/methods , cis-trans-Isomerases/genetics , Adolescent , Adult , Age of Onset , Child , Cross-Sectional Studies , Female , Fluorescein Angiography/methods , Follow-Up Studies , Humans , Longitudinal Studies , Male , Monitoring, Physiologic , Risk Assessment , Young Adult
13.
Angiogenesis ; 23(2): 83-90, 2020 05.
Article in English | MEDLINE | ID: mdl-31583505

ABSTRACT

The retinal vasculature is tightly organized in a structure that provides for the high metabolic demand of neurons while minimizing interference with incident light. The adverse impact of retinal vascular insufficiency is mitigated by adaptive vascular regeneration but exacerbated by pathological neovascularization. Aberrant growth of neovessels in the retina is responsible for impairment of sight in common blinding disorders including retinopathy of prematurity, proliferative diabetic retinopathy, and age-related macular degeneration. Myeloid cells are key players in this process, with diverse roles that can either promote or protect against ocular neovascularization. We have previously demonstrated that myeloid-derived VEGF, HIF1, and HIF2 are not essential for pathological retinal neovascularization. Here, however, we show by cell-specific depletion of Vhl in a mouse model of retinal ischemia (oxygen-induced retinopathy, OIR) that myeloid-derived HIFs promote VEGF and bFGF expression and enhance vascular regeneration in association with improved density and organization of the astrocytic network.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Ischemia/genetics , Myeloid Cells/metabolism , Regeneration/genetics , Retinal Vessels/physiology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Animals , Animals, Newborn , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia/metabolism , Ischemia/pathology , Mice , Mice, Transgenic , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retinal Diseases/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
14.
Invest Ophthalmol Vis Sci ; 59(8): 3330-3339, 2018 07 02.
Article in English | MEDLINE | ID: mdl-30025081

ABSTRACT

Purpose: RPE65-associated Leber congenital amaurosis (RPE65-LCA) is an early-onset severe retinal dystrophy associated with progressive visual field loss. Phase I/II and III gene therapy trials have identified improved retinal sensitivity but little is known about the natural history of retinal sensitivity in RPE65-LCA. Methods: A total of 19 subjects (aged 9 to 23 years) undertook monocular full-field static perimetry of which 13 subjects were monitored longitudinally. Retinal sensitivity was measured as mean sensitivity (MS) and volumetrically quantified (in decibel-steradian) using visual field modeling and analysis software for the total (VTOT), central 30° (V30) and central 15° (V15) visual field. Correlation was evaluated between retinal sensitivity and age, best-corrected visual acuity (BCVA), contrast sensitivity, vision-related quality of life, and genotype. Test-retest reliability was also investigated. Results: V30 was identified to have a strong, weak, and moderate correlation with age, BCVA and contrast sensitivity respectively. Furthermore, V30 was identified as having a weak linear relationship with the mobility and independence domains of the vision-related quality of life questionnaire. Longitudinal analysis demonstrated a slow loss of retinal sensitivity in this cohort. Subjects with at least one RPE65 nonsense variant appeared to show greater progressive loss of retinal sensitivity in the second decade of life than those without. Conclusions: Volumetric assessment of central 30° visual field sensitivity, V30, is a useful independent measure of retinal function and, in our data, represented the best metric to monitor deterioration of retinal sensitivity in RPE65-LCA. Furthermore, functional correlation with genotype may enable more informed prognostic counseling. (ClinicalTrials.gov number, NCT02714816.)


Subject(s)
Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Retina/physiopathology , Visual Fields/physiology , cis-trans-Isomerases/genetics , Adolescent , Child , Contrast Sensitivity/physiology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Quality of Life , Surveys and Questionnaires , Visual Acuity/physiology , Visual Field Tests , Young Adult
15.
Ophthalmology ; 125(11): 1765-1775, 2018 11.
Article in English | MEDLINE | ID: mdl-29884405

ABSTRACT

PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation.


Subject(s)
Human Embryonic Stem Cells/transplantation , Macular Degeneration/congenital , Retinal Pigment Epithelium/transplantation , Adult , Electroretinography , Female , Fluorescein Angiography , Humans , Immunosuppressive Agents/therapeutic use , Macular Degeneration/diagnostic imaging , Macular Degeneration/physiopathology , Macular Degeneration/therapy , Male , Middle Aged , Photoreceptor Cells, Vertebrate/physiology , Quality of Life , Sickness Impact Profile , Slit Lamp Microscopy , Stargardt Disease , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Field Tests , Visual Fields/physiology
16.
Development ; 145(8)2018 04 25.
Article in English | MEDLINE | ID: mdl-29615467

ABSTRACT

In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of this important relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show in mouse that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). By Cre-lox gene excision, we show that Hif2a in retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence of Hif2a in retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a crucial component of the developing neurovascular unit.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Retinal Vessels/growth & development , Retinal Vessels/innervation , Animals , Astrocytes/cytology , Astrocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation , Endostatins/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neovascularization, Physiologic/genetics , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Retinal Pigment Epithelium/growth & development , Retinal Pigment Epithelium/metabolism , Retinal Vessels/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Br Med Bull ; 126(1): 13-25, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29506236

ABSTRACT

Introduction: Inherited retinal diseases are the leading cause of sight impairment in people of working age in England and Wales, and the second commonest in childhood. Gene therapy offers the potential for benefit. Sources of data: Pubmed and clinicaltrials.gov. Areas of agreement: Gene therapy can improve vision in RPE65-associated Leber Congenital Amaurosis (RPE65-LCA). Potential benefit depends on efficient gene transfer and is limited by the extent of retinal degeneration. Areas of controversy: The magnitude of vision improvement from RPE65-LCA gene therapy is suboptimal, and its durability may be limited by progressive retinal degeneration. Growing points: The safety and potential benefit of gene therapy for inherited and acquired retinal diseases is being explored in a rapidly expanding number of trials. Areas timely for developing research: Developments in vector design and delivery will enable greater efficiency and safety of gene transfer. Optimization of trial design will accelerate reliable assessment of outcomes.


Subject(s)
Genetic Therapy/methods , Leber Congenital Amaurosis/therapy , Retinal Degeneration/genetics , Clinical Trials as Topic , Evidence-Based Medicine , Gene Transfer Techniques , Genetic Therapy/trends , Humans , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/physiopathology , Retinal Degeneration/physiopathology
18.
Invest Ophthalmol Vis Sci ; 59(1): 85-93, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29332120

ABSTRACT

Purpose: RPE65-associated Leber congenital amaurosis (RPE65-LCA) is a progressive severe retinal dystrophy with early profound dysfunction of rod photoreceptors followed by progressive cone photoreceptor degeneration. We aim to provide detailed information about how cone dysfunction affects color discrimination. Methods: Seven adults (aged 16-21) with RPE65-LCA underwent monocular color discrimination assessment using the Trivector and Ellipse versions of three computerized tests: Cambridge Colour Test (CCT), low vision version of the Cambridge Colour Test (lvvCCT), and the Universal Colour Discrimination Test (UCDT). For comparison, subjects were also tested using the American Optical Hardy Rand Rittler (AO-HRR) plates. Each assessment was repeated three times. Results: The Trivector version of the tests demonstrated that color discrimination along the tritan axis was undetectable in four subjects, and severely reduced in three subjects. These findings were confirmed by the Ellipse version of the tests. Color discrimination along the protan and deutan axes was evident but reduced in six of seven subjects. Four of seven subjects were unable to read any of the HRR plates. Conclusions: The computerized color vision tests adopted in this study provide detailed information about color discrimination in adult RPE65-LCA patients. The condition is associated with severe impairment of color discrimination, particularly along the tritan axis indicating possible early involvement of S-cones, with additional protan and deutan loss to a lesser extent. This psychophysical assessment strategy is likely to be valuable in measuring the impact of therapeutic intervention on cone function.


Subject(s)
Color Perception/physiology , Leber Congenital Amaurosis/physiopathology , Retinal Rod Photoreceptor Cells/metabolism , cis-trans-Isomerases/genetics , Adolescent , Color Perception Tests , Female , Genetic Variation , Humans , Leber Congenital Amaurosis/genetics , Leber Congenital Amaurosis/metabolism , Male , Young Adult , cis-trans-Isomerases/metabolism
19.
Stem Cell Reports ; 10(2): 406-421, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29307580

ABSTRACT

Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.


Subject(s)
Blindness/therapy , Retinal Cone Photoreceptor Cells/transplantation , Retinal Degeneration/therapy , Stem Cell Transplantation , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Blindness/genetics , Blindness/pathology , Cell Differentiation/genetics , Disease Models, Animal , Eye Proteins/genetics , Humans , Mice , Peripherins/genetics , Retina/pathology , Retina/transplantation , Retinal Cone Photoreceptor Cells/cytology , Retinal Degeneration/pathology , Stem Cells/cytology , cis-trans-Isomerases/genetics
20.
Stem Cells ; 36(5): 709-722, 2018 05.
Article in English | MEDLINE | ID: mdl-29327488

ABSTRACT

Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem-cell-derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC-derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through-put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were fluorescence-activated cell sorted (FACS) using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor-specific antibodies and Ki-67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC-derived organoid cultures. Stem Cells 2018;36:709-722.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Photoreceptor Cells/cytology , Retinal Degeneration/therapy , Animals , Biomarkers/analysis , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Photoreceptor Cells, Vertebrate/cytology , Pluripotent Stem Cells/cytology , Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...