Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32950659

ABSTRACT

Vitamin D is an important regulator of calcium and phosphorus homeostasis in animals. It can be acquired from the diet or synthesised de novo when skin is exposed to UVb. Vitamin D deficiency can lead to a complex of diseases collectively called metabolic bone disease (MBD). Diurnal lizards without access to UVb are prone to develop vitamin D deficiency, even when dietary vitamin D3 is provided. A trial was conducted to determine whether juvenile nocturnal lizards require access to UVb to prevent vitamin D deficiency. All leopard geckos (Eublepharis macularius) were supplemented with dietary vitamin D3. One group was exposed to low level UVb radiation (33-51 µW/cm2) from hatching until 6 months of age and a second group remained unexposed. Animals were fed ad libitum and their growth and weight gain compared with non-exposed controls. At the end of the trial, blood samples were analysed for vitamin D3 metabolites. The concentration of the vitamin D3 metabolite, 25(OH)D3, was higher in UVb exposed animals (61 ± 20 vs. 38 ± 8 nmol/L), confirming cutaneous synthesis with UVb exposure. Growth and weight gain were similar in both groups, and this, together with the absence of clinical symptoms, suggests that dietary vitamin D3 alone can meet the vitamin D requirements for growth of this nocturnal gecko, during the first six months of life. It remains to be investigated whether the higher vitamin D metabolite levels holds other health benefits for this species, such as improved bone density or immune response.


Subject(s)
Cholecalciferol/biosynthesis , Lizards/metabolism , Ultraviolet Rays , Animals , Cholecalciferol/blood , Diet , Lizards/blood
2.
Sci Rep ; 8(1): 10807, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30018318

ABSTRACT

Vertebrates obtain the prohormone vitamin D primarily by endogenous cutaneous synthesis under ultraviolet b (UVb) exposure. To date, endogenous synthesis of vitamin D in insects has never been investigated. In an initial experiment, we exposed four insect species which differ in ecology and morphology (migratory locusts, house crickets, yellow mealworms and black soldier fly larvae (BSFL)) to a low irradiance UVb source. In a second experiment we exposed these species to a higher UV irradiance, and in a third we tested the effect of exposure duration on vitamin D concentrations in yellow mealworms. Low irradiance UVb tended to increase vitamin D3 levels in house crickets, vitamin D2 levels in BSFL and vitamin D2 and D3 in yellow mealworms. Higher UVb irradiance increased vitamin D3 levels in all species but BSFL. Both BSFL and migratory locusts had increased vitamin D2 levels. Longer UVb exposure of yellow mealworms increased vitamin D2 and increased vitamin D3 until a plateau was reached at 6400 IU/kg. This study shows that insects can synthesize vitamin D de novo and that the amounts depend on UVb irradiance and exposure duration.


Subject(s)
Coleoptera/radiation effects , Insecta/radiation effects , Ultraviolet Rays , Vitamin D/biosynthesis , Animals , Cholecalciferol/analysis , Chromatography, High Pressure Liquid , Coleoptera/metabolism , Ergocalciferols/analysis , Grasshoppers/chemistry , Grasshoppers/metabolism , Grasshoppers/radiation effects , Gryllidae/chemistry , Gryllidae/metabolism , Gryllidae/radiation effects , Insecta/chemistry , Insecta/metabolism , Temperature , Vitamin D/analysis
3.
J Anim Physiol Anim Nutr (Berl) ; 102(1): 308-316, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28452197

ABSTRACT

The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact lamps for two hours per day, with a control group not exposed to UVb radiation. At 120 days of age, blood samples were obtained and concentrations of 25(OH)D3 , Ca, P and uric acid were determined. In addition, plasma 25(OH)D3 concentration was determined in free-living adult bearded dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb-exposed groups had low 25(OH)D3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free-living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D3 levels similar to those of free-living bearded dragons in their native habitat.


Subject(s)
Calcifediol/blood , Lizards/growth & development , Ultraviolet Rays , Animals , Calcifediol/biosynthesis , Female , Lizards/blood , Male , Skin
SELECTION OF CITATIONS
SEARCH DETAIL