Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 18073, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103410

ABSTRACT

The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.


Subject(s)
Endopeptidases , Mycobacteriophages , Mycobacterium smegmatis , Mycobacterium smegmatis/virology , Mycobacterium smegmatis/drug effects , Endopeptidases/metabolism , Endopeptidases/chemistry , Endopeptidases/pharmacology , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Cell Wall/metabolism , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Peptidoglycan/metabolism , Peptidoglycan/chemistry , Galactans
2.
Drug Discov Today ; 29(7): 104049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830505

ABSTRACT

Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.


Subject(s)
Mycobacteriophages , Humans , Animals , Tuberculosis/drug therapy , Mycobacterium tuberculosis , Phage Therapy/methods , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/therapy , Mycobacterium Infections/therapy , Mycobacterium Infections/drug therapy
3.
J Basic Microbiol ; 64(6): e2400027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548701

ABSTRACT

Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.


Subject(s)
Biofilms , Genome, Viral , Genomics , Lysogeny , Mycobacteriophages , Mycobacterium smegmatis , Mycobacteriophages/genetics , Mycobacteriophages/physiology , Biofilms/growth & development , Genome, Viral/genetics , Mycobacterium smegmatis/virology , Mycobacterium smegmatis/genetics , Phylogeny
4.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405724

ABSTRACT

Endolysins are highly evolved bacteriophage-encoded lytic enzymes produced to damage the bacterial cell wall for phage progeny release. They offer promising potential as highly specific lytic proteins with a low chance of bacterial resistance. The diversity in lysin sequences and domain organization can be staggering. In silico analysis of bacteriophage and prophage genomes can help identify endolysins exhibiting unique features and high antibacterial activity, hence feeding the pipeline of narrow-spectrum protein antibiotics. Mycobacteriophage lysis cassettes mostly have two lytic enzymes, LysinA and LysinB. The enzyme LysinA targets peptidoglycan in the cell wall and possesses a modular architecture. LysinB typically contains a single domain and acts upon the mycolyl ester linkages in mycolyl-arabinogalactan-peptidoglycan (Payne et al., 2010). This study aimed to find novel LysinBs against Mycobacterium fortuitum. After a detailed in silico characterization of lysis cassettes from three M. fortuitum prophages, we chose to work on a LysinB (hereafter described as LysinB_MF) found in an incomplete prophage (phiE1336, 9.4 kb in strain E1336). LysinB_MF showed low sequence similarity with any other endolysins in the database and formed a separate clade on phylogenetic analysis. LysinB_MF's structure, extracted from the AlphaFold Protein Structure Database, demonstrated a modular architecture with two structurally distinct domains: a peptidoglycan-binding domain (PGBD) at the N-terminal and the characteristic alpha/beta hydrolase domain connected via a linker peptide. We found the alpha/beta hydrolase domain, which is the enzyme-active domain (EAD), contains the conserved Ser-Asp-His catalytic triad with a tunnel-like topology and forms intermolecular hydrogen bonds. The PGBD shows structural similarity to the cell-wall binding domain of an amidase from Clostridium acetobutylicum, hinting at its acquisition due to domain mobility. Our in silico electrostatic potential analysis suggested that PGBD might be essential to the enzyme activity. This was experimentally validated by generating a truncated version of the enzyme, which demonstrated about six-fold decreased activity compared to its native form. The antimycobacterial activity of this enzyme was also compromised in its absence. Based on our analysis, PGBD emerged as an integral constituent of enzymes with diverse functional properties and is predicted to be a conserved cross-kingdom. Overall, this study highlights the importance of mining mycobacterial prophages as a novel endolysin source. It also provides unique insights into the diverse architecture of mycobacteriophage-encoded endolysins and the importance of functional domains for their catalytic activities.

5.
Front Microbiol ; 14: 1170418, 2023.
Article in English | MEDLINE | ID: mdl-37789862

ABSTRACT

Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.

6.
Virus Res ; 323: 198957, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36209922

ABSTRACT

Mycobacteriophages are viruses of Mycobacterium spp. with promising diagnostic and therapeutic potential. Phage genome exploration and characterization of their proteomes are essential to gaining a better understanding of their role in phage biology. So far, genomes of about 2113 mycobacteriophages have been defined and from among those, 1563 phage protein families (phamilies) are identified. However, the function of only a fraction (about 15%) is known since a majority of ORFs in phage genomes are hypothetical proteins. In this study, we have analyzed Gp65 (AQT25877.1), a putative AAA ATPase (Pham 9410) from a F1 cluster mycobacteriophage SimranZ1 (KY385384.1). Though homology analysis of Gp65-AAA ATPase showed the presence of this gene in 38 mycobacteriophages of the F1 cluster, however its further analysis has not been reported yet in any study. The sequence-based functional annotation predicted Gp65 to belong to the P-loop NTPase superfamily and to have AAA_24 and RecA/RadA domains, which are known to be involved in ATP-dependent DNA recombination/repair/maintenance mechanisms. Molecular docking of Gp65 with ATP identified Gly21 and Ser23 residues to be involved in the specific binding. The experimental validation of the DNA-dependent ATPase activity of Gp65 was done using a microtiter plate assay, where the ATPase activity was observed to increase in the presence of dsDNA. The structural characteristics of the protein are demonstrated by non-denaturing gel electrophoresis, showing Gp65 to exist in oligomeric states, which was confirmed by transmission electron microscopy (TEM). It was revealed to exist as a hexamer with a prominent central pore. In this study, based on the stated structural and functional characterization, we report the AAA ATPase to have a putative role in DNA recombination/repair/maintenance mechanism in mycobacteriophages.

7.
J Biosci ; 472022.
Article in English | MEDLINE | ID: mdl-36476775

ABSTRACT

In type 2 diabetes mellitus (T2DM) patients, chronic hyperglycemia and inflammation underlie susceptibility to tuberculosis (TB) and result in poor TB control. Here, an integrative pathway-based approach is used to investigate perturbed pathways in T2DM patients that render susceptibility to TB. We obtained 36 genes implicated in type 2 diabetes-associated tuberculosis (T2DMTB) from the literature. Gene expression analysis on T2DM patient data (GSE26168) showed that DEFA1 is differentially expressed at Padj <0.05. The human host TB susceptibility genes TNFRSF10A, MSRA, GPR148, SLC37A3, PXK, PROK2, REV3L, PGM1, HIST3H2A, PLAC4, LETM2, and EMP2 and hsa-miR-146a microRNA were also differentially expressed at Padj <0.05. We included all these genes and added the remaining 28 genes from the T2DMTB set and the remaining differentially expressed genes at Padj <0.05 in STRING and obtained a well-connected network with high confidence score (≥0.7). Further, we extracted the KEGG pathways at FDR <0.05 and retained only the diabetes and TB pathways. The network was simulated with BioNSi using gene expression data. It is evident from BioNSi analysis that the NF-kappa B and Toll-like receptor pathways are commonly perturbed with high ranking in multiple gene expression datasets of type 2 diabetes versus healthy controls. The other pathways, necroptosis pathway and FoxO signalling pathway, appear perturbed with high ranking in different gene expression datasets. These pathways likely underlie susceptibility to TB in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Tuberculosis , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Tuberculosis/genetics , DNA-Directed DNA Polymerase , DNA-Binding Proteins , Membrane Glycoproteins
9.
Infect Dis Ther ; 11(1): 53-78, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34807451

ABSTRACT

Antimicrobials are essential for combating infectious diseases. However, an increase in resistance to them is a major cause of concern. The empirical use of drugs in managing COVID-19 and the associated secondary infections have further exacerbated the problem of antimicrobial resistance. Hence, the situation mandates exploring and developing efficient alternatives for the treatment of bacterial and fungal infections in patients suffering from COVID-19 or other viral infections. In this review, we have described the alternatives to conventional antimicrobials that have shown promising results and are at various stages of development. An acceleration of efforts to investigate their potential as therapeutics can provide more treatment options for clinical management of drug-resistant secondary bacterial and fungal infections in the current pandemic and similar potential outbreaks in the future. The alternatives include bacteriophages and their lytic enzymes, anti-fungal enzymes, antimicrobial peptides, nanoparticles and small molecule inhibitors among others. What is required at this stage is to critically examine the challenges in developing the listed compounds and biomolecules as therapeutics and to establish guidelines for their safe and effective application within a suitable time frame. In this review, we have attempted to highlight the importance of rational use of antimicrobials in patients suffering from COVID-19 and boost the deployment of alternative therapeutics.

10.
J Biomol Struct Dyn ; 40(22): 12118-12134, 2022.
Article in English | MEDLINE | ID: mdl-34486935

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have been made by the scientific community in containing the virus by successful development of vaccines and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In this study, we compiled the known natural anti-viral compounds using text mining of the literature and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong binding to the target proteins and causing structural deformation of three structural proteins (N, S and M). We recommend the inhibitory effects of these compounds from our study should be experimentally validated against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Transcription Factors , Antiviral Agents/pharmacology , Data Mining , Molecular Docking Simulation , Protease Inhibitors , Molecular Dynamics Simulation
11.
Immunogenetics ; 73(5): 357-368, 2021 10.
Article in English | MEDLINE | ID: mdl-34228167

ABSTRACT

A rise in drug-resistant tuberculosis (TB) cases demands continued efforts towards the discovery and development of drugs and vaccines. Secretory proteins of Mycobacterium tuberculosis (H37Rv) are frequently studied for their antigenicity and their scope as protein subunit vaccines requires further analysis. In this study, Rv3899c of H37Rv emerges as a potential vaccine candidate on its evaluation by several bioinformatics tools. It is a non-toxic, secretory protein with an 'immunoglobulin-like' fold which does not show similarity with a human protein. Through BlastP and MEME suite analysis, we found Rv3899c homologs in several mycobacterial species and its antigenic score (0.54) to compare well with the known immunogens such as ESAT-6 (0.56) and Rv1860 (0.52). Structural examination of Rv3899c predicted ten antigenic peptides, an accessibility profile of the antigenic determinants constituting B cell epitope-rich regions and a low abundance of antigenic regions (AAR) value. Significantly, STRING analysis showed ESX-2 secretion system proteins and antigenic PE/PPE proteins of H37Rv as the interacting partners of Rv3899c. Further, molecular docking predicted Rv3899c to interact with human leukocyte antigen HLA-DRB1*04:01 through its antigenically conserved motif (RAAEQQRLQRIVDAVARQEPRISWAAGLRDDGTT). Interestingly, the binding affinity was observed to increase on citrullination of its Arg1 residue. Taken together, the computational characterization and predictive information suggest Rv3899c to be a promising TB vaccine candidate, which should be validated experimentally.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/immunology , HLA-DRB1 Chains/metabolism , Mycobacterium tuberculosis/immunology , Amino Acid Motifs , Bacterial Proteins/metabolism , Computer Simulation , Epitopes, B-Lymphocyte/immunology , HLA-DRB1 Chains/chemistry , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Molecular Docking Simulation , Mycobacterium tuberculosis/chemistry , Protein Domains , Protein Folding
12.
Appl Microbiol Biotechnol ; 105(9): 3611-3623, 2021 May.
Article in English | MEDLINE | ID: mdl-33860835

ABSTRACT

Bacterial cell has always been an attractive target for anti-infective drug discovery. MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) enzyme of Escherichia coli (E.coli) is crucial for peptidoglycan biosynthetic pathway, as it is involved in the early stages of bacterial cell wall biosynthesis. In the present study we aim to identify novel chemical structures targeting the MurA enzyme. For screening purpose, we used in silico approach (pharmacophore based strategy) for 52,026 library compounds (Chembridge, Chemdiv and in house synthetics) which resulted in identification of 50 compounds. These compounds were screened in vitro against MurA enzyme and release of inorganic phosphate (Pi) was estimated. Two compounds (IN00152 and IN00156) were found to inhibit MurA enzyme > 70% in primary screening and IC50 of 14.03 to 32.30 µM respectively. These two hits were further evaluated for their mode of inhibition studies and whole-cell activity where we observed 2-4 folds increase in activity in presence of Permeabilizer EDTA (Ethylenediaminetetraacetic acid). Combination studies were also performed with known antibiotics in presence of EDTA. Hits are reported for the first time against this target and our report also support the use of OM permeabilizer in combination with antibacterial compounds to address the permeability and efficacy issue. These lead hits can be further optimized for drug discovery. KEY POINTS: • Emerging Gram negative resistant strains is a matter of concern. • Need for new screening strategies to cope with drying up antibiotics pipeline. • Outer membrane permeabilizers could be useful to improve potency of molecules to reach its target.


Subject(s)
Alkyl and Aryl Transferases , Escherichia coli , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Peptidoglycan
13.
Molecules ; 25(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114668

ABSTRACT

The synthesis of hitherto unknown 5'-deoxy-5'-(4-substituted-1,2,3-triazol-1-yl)-uridine and its evaluation, through an one-pot screening assay, against MurA-F enzymes involved in Mycobacterium tuberculosis (Mtb), are described. Starting from UDP-N-acetylmuramic acid (UDP-MurNAc), the natural substrate involved in the peptidoglycan biosynthesis, our strategy was to substitute the diphosphate group of UDP-MurNAc by a 1,2,3-triazolo spacer under copper-catalyzed azide-alkyne cycloaddition conditions. The structure-activity relationship was discussed and among the 23 novel compounds developed, N-acetylglucosamine analogues 11c and 11e emerged as the best inhibitors against the Mtb MurA-F enzymes reconstruction pathway with an inhibitory effect of 56% and 50%, respectively, at 100 µM. Both compounds are selective inhibitors of Mtb MurE, the molecular docking and molecular dynamic simulation suggesting that 11c and 11e are occupying the active site of Mtb MurE ligase.


Subject(s)
Drug Design , Mycobacterium tuberculosis/enzymology , Peptide Synthases/antagonists & inhibitors , Triazoles/chemistry , Uridine/chemical synthesis , Uridine/pharmacology , Catalytic Domain , Chemistry Techniques, Synthetic , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Uridine/chemistry
14.
World J Microbiol Biotechnol ; 36(6): 83, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32468233

ABSTRACT

Bacteriophage-derived endolysin enzymes play a critical role in disintegration of the host bacterial cell wall and hence have gained considerable attention as possible therapeutics for the treatment of drug-resistant infections. Endolysins can target both dividing and non-dividing cells and given the vital role peptidoglycan plays in bacterial survival, bacteria are less likely to modify it even if continuously exposed to lysins. Hence, probability of bacteria developing resistance to lysins appear bleak. Endolysins from mycobacteriophages offer great potential as alternative therapeutics for the drug-resistant TB. However, considering that a large number of mycobacteriophages have been discovered so far, the information on endolysins come from only a few mycobacteriophages. In this study, we report the structural and functional characterization of endolysins (LysinA and LysinB) encoded by mycobacteriophage PDRPxv which belongs to B1 sub cluster. On in silico analysis, we found LysinA to be a modular protein having peptidase domain at the N-terminal (104 aa), a central amidase domain (174 aa) and the peptidoglycan binding domain (62 aa) at the C-terminal. Additionally, 'H-X-H', which is a conserved motif and characteristic of peptidase domains, and the conserved residues His-His-Asp, which are characteristic of amidase domain were also observed. In LysinB enzyme, a single α/ß hydrolase domain having a catalytic triad (Ser-Asp-His) and G-X-S-X-G motif, which are characteristic of the serine esterase enzymes were predicted to be present. Both the enzymes were purified as recombinant proteins and their antimycobacterial activity against M. smegmatis was demonstrated through turbidimetric experiments and biochemical assay. Interesting observation in this study is the secretory nature of LysinA evident by its periplasmic expression in E.coli, which might explain the ability of PDRPxv to lyse the bacterial host in the absence of transmembrane Holin protein.


Subject(s)
Endopeptidases , Mycobacteriophages/enzymology , Anti-Bacterial Agents/biosynthesis , Computer Simulation , Endopeptidases/biosynthesis , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Endopeptidases/pharmacology , Escherichia coli/metabolism , Mycobacterium smegmatis/drug effects , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/biosynthesis , Viral Proteins/chemistry , Viral Proteins/isolation & purification , Viral Proteins/pharmacology
16.
Virus Res ; 279: 197884, 2020 04 02.
Article in English | MEDLINE | ID: mdl-31981773

ABSTRACT

Mycobacteriophages are viruses specific to mycobacteria that have gained attention as alternative therapeutic strategies for treating antibiotic-resistant infections. Mycobacteriophages are highly diverse and have been grouped into 29 clusters, 71 sub-clusters and 10 singletons based on the genome sequence. Here, we annotate the genome of PDRPxv, a lytic mycobacteriophage isolated from New Delhi; it belongs to the Siphoviridae family as determined by transmission electron microscopy. This phage survives at higher temperatures (up to 55 °C) and in alkaline conditions (up to pH11). PDRPxv phage genome is 69,171 bp in length with 66.35 % GC content and encodes 107 putative open reading frames and belongs to the B1 sub-cluster. Genome annotation indicated that genes for DNA encapsidation, structural proteins, replication/transcription and lysis of the host are present in functional clusters. Structural proteins encoded by Gp10-Gp12, Gp18, Gp25 and Gp28-Gp33 were identified by mass spectrometry. Interestingly, no gene encoding a holin function was found. Single-step growth curve revealed that PDRPxv has an adsorption time of 45 min, a latency time of 135 min and an average burst size of 99 phage particles per infected cell. The short latency period and the large burst size mark the lytic nature of the PDRPxv phage, which could therefore be a promising therapeutic candidate against pathogenic Mycobacterium species.


Subject(s)
Genome, Viral , Mycobacteriophages/classification , Mycobacteriophages/genetics , DNA, Viral/genetics , Mycobacterium smegmatis/virology , Phylogeny , Sequence Analysis, DNA , Soil Microbiology , Whole Genome Sequencing
17.
J Biomol Struct Dyn ; 38(9): 2521-2532, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31244382

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is one amongst the top 10 causes of death worldwide. The growing rise in antibiotic resistance compounded with slow and expensive drug discovery has further aggravated the situation. 'Drug repurposing' is a promising approach where known drugs are examined for a new indication. In the present study, we have attempted to identify drugs that could target MurB and MurE enzymes involved in the muramic acid synthesis pathway (Mur Pathway) in Mtb. FDA-approved drugs from two repositories i.e. Drug Bank (1932 drugs) and e-LEA3D (1852 drugs) were screened against these proteins. Several criteria were applied to study the protein-drug interactions and the consensus drugs were further studied by molecular dynamics (MD) simulation. Our study found Sulfadoxine (-7.3 kcal/mol) and Pyrimethamine (-7.8 kcal/mol) to show stable interaction with MurB while Lifitegrast (-10.5 kcal/mol) and Sildenafil (-9.1 kcal/mol) showed most reliable interaction with MurE. Furthermore, binding free energy (ΔGbind), RMSD and RMSF data and the number of hydrogen bonds corroborated the stability of interactions and hence these drugs for repurposing should be explored further.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis , Drug Repositioning , Humans , Molecular Dynamics Simulation , Tuberculosis/drug therapy
18.
SLAS Discov ; 25(1): 70-78, 2020 01.
Article in English | MEDLINE | ID: mdl-31597510

ABSTRACT

The rapid rise in the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb) mandates the discovery of novel tuberculosis (TB) drugs. Mur enzymes, which are identified as essential proteins in Mtb and catalyze the cytoplasmic steps in the peptidoglycan biosynthetic pathway, are considered potential drug targets. However, none of the clinical drugs have yet been developed against these enzymes. Hence, the aim of this study was to identify novel inhibitors of Mur enzymes in Mycobacterium tuberculosis. We screened an antitubercular compound library of 684 compounds, using MurB and MurE enzymes of the Mtb Mur pathway as drug targets. For experimental validation, the top hits obtained on in silico screening were screened in vitro, using Mtb Mur enzyme-specific assays. In all, seven compounds were found to show greater than 50% inhibition, with the highest inhibition observed at 77%, and the IC50 for these compounds was found to be in the range of 28-50 µM. Compound 5175112 showed the lowest IC50 (28.69 ± 1.17 µM), and on the basis of (1) the binding affinity, (2) the stability of interaction noted on molecular dynamics simulation, and (3) an in vitro assay, MurE appeared to be its target enzyme. We believe that the overall strategy followed in this study and the results obtained are a good starting point for developing Mur enzyme-specific Mtb inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Evaluation, Preclinical , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Peptide Synthases/antagonists & inhibitors , Small Molecule Libraries , Antitubercular Agents/chemistry , Binding Sites , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
19.
Can J Microbiol ; 64(7): 483-491, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29544082

ABSTRACT

Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages - PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with ∼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.


Subject(s)
Bacteriolysis/physiology , Mycobacteriophages/isolation & purification , Mycobacteriophages/metabolism , Mycobacterium tuberculosis/virology , Base Composition , DNA, Viral/genetics , Genes, Viral/genetics , Genome, Viral , India , Mycobacteriophages/classification , Mycobacteriophages/genetics , Mycobacterium smegmatis/virology , Open Reading Frames , Siphoviridae/classification , Siphoviridae/genetics , Siphoviridae/isolation & purification
20.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 397-406, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29203374

ABSTRACT

The biosynthesis of UDP-N-acetylmuramic acid (UDP-MurNAc) by reduction of UDP-N-acetylglucosamine-enolpyruvate (UDP-GlcNAc-EP) in an NADPH and FAD-dependent reaction in bacteria is one of the key steps in peptidoglycan biosynthesis catalyzed by UDP-N-acetylglucosamine-enolpyruvate reductase (MurB). Here, we present the crystal structure of Mycobacterium tuberculosis MurB (MtbMurB) with FAD as the prosthetic group at 2.0Å resolution. There are six molecules in asymmetric unit in the form of dimers. Each protomer can be subdivided into three domains and the prosthetic group, FAD is bound in the active site between domain I and domain II. Comparison of MtbMurB structure with the structures of the Escherichia coli MurB (in complex with UDP-GlcNAc-EP) and Pseudomonas aeruginosa MurB (in complex with NADPH) showed all three structures share similar domain architecture and residues in the active site. The nicotinamide and the enol pyruvyl moieties are well aligned upon superimposition, both positioned in suitable position for hydride transfer to and from FAD. The comparison studies and MD simulations demonstrate that the two lobes of domain-III become more flexible. The substrates (NADPH and UDP-GlcNAc-EP) binding responsible for open conformation of MurB, suggesting that NADPH and UDP-GlcNAc-EP interactions are conformationally stable. Our findings provide a detail mechanism about the closed to open state by binding of NADPH and UDP-GlcNAc-EP induces the conformational changes of MurB structure that may trigger the MurB catalytic reaction.


Subject(s)
Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , Uridine Diphosphate N-Acetylglucosamine/analogs & derivatives , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Mycobacterium tuberculosis/genetics , NADP/chemistry , NADP/metabolism , Protein Binding , Protein Domains , Protein Multimerization , Sequence Homology, Amino Acid , Uridine Diphosphate N-Acetylglucosamine/chemistry , Uridine Diphosphate N-Acetylglucosamine/genetics , Uridine Diphosphate N-Acetylglucosamine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL