Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(1): e23027, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163192

ABSTRACT

The risk of transmission of respiratory tract infections is considerably enhanced at mass gathering (MG) religious events. Hajj is an annual Islamic MG event with approximately 3 million Muslim pilgrims from over 180 countries concentrated in Makkah, Saudi Arabia. This study aimed to investigate the genetic diversity of influenza viruses circulating among pilgrims during the Hajj pilgrimage. We performed a cross-sectional analytical study where nasopharyngeal swabs (NPs) from pilgrims with respiratory tract illnesses presenting to healthcare facilities during the 2019 Hajj were screened for influenza viruses. Influenza A subtypes and influenza B lineages were determined by multiplex RT-PCR for positive influenza samples. The phylogenetic analysis was carried out for the hemagglutination (HA) gene. Out of 185 nasopharyngeal samples, 54 were positive for the human influenza virus. Of these, 27 were influenza A H1N1 and 19 H3N2, 4 were untypable influenza A, and 4 were influenza B. Phylogenetic analysis revealed that the H1N1 and H3N2 strains differentiated into different and independent genetic groups and formed close clusters with selected strains of influenza viruses from various locations. To conclude, this study demonstrates a high genetic diversity of circulating influenza A subtypes among pilgrims during the Hajj Season. There is a need for further larger studies to investigate in-depth the genetic characteristics of influenza viruses and other respiratory viruses during Hajj seasons.

2.
Mar Drugs ; 21(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38132947

ABSTRACT

Middle East Respiratory Syndrome (MERS) is a viral respiratory disease caused b a special type of coronavirus called MERS-CoV. In the search for effective substances against the MERS-CoV main protease, we looked into compounds from brown algae, known for their medicinal benefits. From a set of 1212 such compounds, our computer-based screening highlighted four-CMNPD27819, CMNPD1843, CMNPD4184, and CMNPD3156. These showed good potential in how they might attach to the MERS-CoV protease, comparable to a known inhibitor. We confirmed these results with multiple computer tests. Studies on the dynamics and steadiness of these compounds with the MERS-CoV protease were performed using molecular dynamics (MD) simulations. Metrics like RMSD and RMSF showed their stability. We also studied how these compounds and the protease interact in detail. An analysis technique, PCA, showed changes in atomic positions over time. Overall, our computer studies suggest brown algae compounds could be valuable in fighting MERS. However, experimental validation is needed to prove their real-world effectiveness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Viral Proteins , Coronavirus Infections/drug therapy , Endopeptidases , Peptide Hydrolases/pharmacology
3.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811742

ABSTRACT

Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.

4.
Sci Rep ; 13(1): 14570, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666979

ABSTRACT

Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Humans , Drug Repositioning , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Minocycline , Drug Discovery , Peptide Hydrolases
5.
Viruses ; 15(8)2023 08 15.
Article in English | MEDLINE | ID: mdl-37632081

ABSTRACT

The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions is crucial for reducing fatalities and mitigating the impact of Marburg virus outbreaks. In this investigation, a virtual screening approach was employed to evaluate 2042 natural compounds for their potential interactions with the VP35 protein of the Marburg virus. Average and worst binding energies were calculated for all 20 poses, and compounds that exhibited binding energies <-6 kcal/mol in both criteria were selected for further analysis. Based on binding energies, only six compounds (Estradiol benzoate, INVEGA (paliperidone), Isosilybin, Protopanaxadiol, Permethrin, and Bufalin) were selected for subsequent investigations, focusing on interaction analysis. Among these selected compounds, Estradiol benzoate, INVEGA (paliperidone), and Isosilybin showed strong hydrogen bonds, while the others did not. In this study, the compounds Myricetin, Isosilybin, and Estradiol benzoate were subjected to a molecular dynamics (MD) simulation and free binding energy calculation using MM/GBSA analysis. The reference component Myricetin served as a control. Estradiol benzoate exhibited the most stable and consistent root-mean-square deviation (RMSD) values, whereas Isosilybin showed significant fluctuations in RMSD. The compound Estradiol benzoate exhibited the lowest ΔG binding free energy (-22.89 kcal/mol), surpassing the control compound's binding energy (-9.29 kcal/mol). Overall, this investigation suggested that Estradiol benzoate possesses favorable binding free energies, indicating a potential inhibitory mechanism against the VP35 protein of the Marburg virus. The study proposes that these natural compounds could serve as a therapeutic option for preventing Marburg virus infection. However, experimental validation is required to further corroborate these findings.


Subject(s)
Ebolavirus , Marburgvirus , Cheminformatics , Paliperidone Palmitate , Gene Library
6.
Viruses ; 15(7)2023 07 04.
Article in English | MEDLINE | ID: mdl-37515188

ABSTRACT

The World Health Organization (WHO) has designated the Zika virus (ZIKV) as a significant risk to the general public's health. Currently, there are no vaccinations or medications available to treat or prevent infection with the Zika virus. Thus, it is urgently required to develop a highly efficient therapeutic molecule. In the presented study, a computationally intensive search was carried out to identify potent compounds that have the potential to bind and block the activity of ZIKV NS5 RNA-dependent RNA polymerase (RdRp). The anti-dengue chemical library was subjected to high-throughput virtual screening and MM/GBSA analysis in order to rate the potential candidates. The top three compounds were then chosen. According to the MM/GBSA analysis, compound 127042987 from the database had the highest binding affinity to the protein with a minimum binding free energy of -77.16 kcal/mole. Compound 127042987 had the most stable RMSD trend and the greatest number of hydrogen bond interactions when these chemical complexes were evaluated further under a 100 ns molecular dynamics simulation. Compound 127042987 displayed the best binding free energy (GBind) of -96.50 kcal/mol, surpassing the native ligand binding energy (-66.17 kcal/mole). Thereafter, an MM/GBSA binding free energy study was conducted to validate the stability of selected chemical complexes. Overall, this study illustrated that compound 127042987 showed preferred binding free energies, suggesting a possible inhibitory mechanism against ZIKV-RdRp. As per this study, it was proposed that compound 127042987 could be used as a therapeutic option to prevent Zika virus infection. These compounds need to be tested in experiments for further validation.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/genetics , Zika Virus Infection/drug therapy , Molecular Dynamics Simulation , Molecular Docking Simulation
7.
One Health ; 17: 100601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37520847

ABSTRACT

High seroprevalence rates of several phleboviruses have been reported in domestic animals and humans in sandfly-infested regions. Sandfly Fever Sicilian virus (SFSV) and Toscana virus (TOSV) are two of these viruses commonly transmitted by Phlebotomus sandflies. While SFSV can cause rapidly resolving mild febrile illness, TOSV could involve the central nervous system (CNS), causing diseases ranging from aseptic meningitis to meningoencephalitis. Sandfly-associated phleboviruses have not been investigated before in Saudi Arabia and are potential causes of infection given the prevalence of sandflies in the country. Here, we investigated the seroprevalence of SFSV and TOSV in the western region of Saudi Arabia in samples collected from blood donors, livestock animals, and animal handlers. An overall seroprevalence of 9.4% and 0.8% was found in humans for SFSV and TOSV, respectively. Seropositivity was significantly higher in non-Saudis compared to Saudis and increased significantly with age especially for SFSV. The highest seropositivity rate was among samples collected from animal handlers. Specifically, in blood donors, 6.4% and 0.7% tested positive for SFSV and TOSV nAbs, respectively. Animal handlers showed higher seroprevalence rates of 16% and 1% for anti-SFSV and anti-TOSV nAbs, respectively, suggesting that contact with livestock animals could be a risk factor. Indeed, sera from livestock animals showed seropositivity of 53.3% and 4.4% in cows, 27.5% and 7.8% in sheep, 2.2% and 0.0% in goats, and 10.0% and 2.3% in camels for SFSV and TOSV, respectively. Together, these results suggest that both SFSV and TOSV are circulating in the western region of Saudi Arabia in humans and livestock animals, albeit at different rates, and that age and contact with livestock animals could represent risk factors for infection with these viruses.

8.
Front Genet ; 13: 880440, 2022.
Article in English | MEDLINE | ID: mdl-36479247

ABSTRACT

Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.

9.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431817

ABSTRACT

Infections caused by the monkeypox virus (MPXV) have continued to be transmitted significantly in recent years. However, understanding the transmission mechanism, risk factors, and consequences of infection are still limited. Structure-based drug design for MPXV is at an early stage due to the availability of protein structures that have been determined experimentally. However, the structure of the A42R profilin-like protein of MPXV has been solved and submitted to the structure database. This study illustrated an in silico structure-based approach to identify the potential hit compound against A42R of MPXV. Here, 65 Plantago lanceolata compounds were computationally screened against A42R of MPXV. Virtual screening identified top five hits (i) Luteolin 7,3'-Diglucuronide (PubChem ID: 44258091), (ii) Luteolin 7-Glucuronide-3'-Glucoside (PubChem ID: 44258090), (iii) Plantagoside (PubChem ID: 174157), (iv) Narcissoside (PubChem ID: 5481663), and (v) (AlphaE,8S,9R)-N-(3,4-Dihydroxyphenethyl)-8-[(3,4-Dihydroxyphenethyl)Carbamoyl]-9-(1,3-Benzodioxole-5-Yl)-3aalpha,7aalpha-Ethano-1,3-Benzodioxole-5-Acrylamide (PubChem ID: 101131595), with binding energy <−9.0 kcal/mol that was further validated by re-docking and molecular dynamic (MD) simulation. Interaction analysis of re-docked poses confirmed the binding of these top hits to the A42R protein as reported in the reference compound, including active residues ARG114, ARG115, and ARG119. Further, MD simulation and post-simulation analysis support Plantagoside and Narcissoside for substantial stability in the binding pocket of viral protein contributed by hydrogen and hydrophobic interactions. The compounds can be considered for further optimisation and in vitro experimental validation for anti-monkeypox drug development.


Subject(s)
Monkeypox virus , Plantago , Luteolin , Profilins , Antiviral Agents/pharmacology , Molecular Dynamics Simulation , Benzodioxoles
10.
PLoS One ; 17(11): e0277328, 2022.
Article in English | MEDLINE | ID: mdl-36383621

ABSTRACT

A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Drug Repositioning , Polyproteins , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Molecular Docking Simulation
11.
Viruses ; 14(8)2022 08 20.
Article in English | MEDLINE | ID: mdl-36016449

ABSTRACT

Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infection, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demonstrated as a truly effective approach. Among various DENV drug targets, non-structural protein 5 (NS5)-a highly conserved protein among the family Flaviviridae-carries the RNA-dependent RNA polymerase (DENVRdRp) domain at the C-terminal, and its "N-pocket" allosteric site is widely considered for anti-DENV drug development. Therefore, in this study, we developed a pharmacophore model by utilising 41 known inhibitors of the DENVRdRp domain, and performed model screening against the FDA's approved drug database for drug repurposing against DENVRdRp. Herein, drugs complying with the pharmacophore hypothesis were further processed through standard-precision (SP) and extra-precision (XP) docking scores (DSs) and binding pose refinement based on MM/GBSA binding energy (BE) calculations. This resulted in the identification of four potential potent drugs: (i) desmopressin (DS: -10.52, BE: -69.77 kcal/mol), (ii) rutin (DS: -13.43, BE: -67.06 kcal/mol), (iii) lypressin (DS: -9.84, BE: -67.65 kcal/mol), and (iv) lanreotide (DS: -8.72, BE: -64.7 kcal/mol). The selected drugs exhibited relevant interactions with the allosteric N-pocket of DENVRdRp, including priming-loop and entry-point residues (i.e., R729, R737, K800, and E802). Furthermore, 100 ns explicit-solvent molecular dynamics simulations and end-point binding free energy assessments support the considerable stability and free energy of the selected drugs in the targeted allosteric pocket of DENVRdRp. Hence, these four drugs, repurposed as potent inhibitors of the allosteric site of DENVRdRp, are recommended for further validation using experimental assays.


Subject(s)
Dengue Virus , Hepatitis C, Chronic , Allosteric Site , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue Virus/genetics , Drug Repositioning , Humans , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins/metabolism
12.
Saudi Pharm J ; 30(7): 979-1002, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35637849

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a more severe strain of coronavirus (CoV) that was first emerged in China in 2019. Available antiviral drugs could be repurposed and natural compounds with antiviral activity could be safer and cheaper source of medicine for SARS-CoV-2. 78 natural antiviral compounds database was identified from literature and virtual screening technique was applied to identify potential 3-chymotrypsin-like protease (3CLpro) inhibitors. Molecular docking studies were conducted to analyze the main protease (3CLpro) and inhibitors interactions with key residues of active site of target protein (PDB ID: 6LU7), active site constitute the part of active domain I and II of 3CLpro. 10 compounds with highest dock score were subjected to calculate ADMET parameters to figure out drug-likeness. Molecular dynamic (MD) simulation of the selected lead was performed by Amber simulation package to understand the conformational changes in docked complex. MD simulations analysis (RMSD, RMSF, Rg, BF, HBs, and SASA plots) of lead bounded with 3CLpro, hence revealed the important structural turns and twists during MD simulations from 0 to 100 ns. MM-PBSA/GBSA methods has also been applied for the estimation binding free energy (BFE) of the selected lead-complex. The present study has identified lead compound "Forsythoside A" an active extract of Forsythia suspense as SARS-CoV-2 3CLpro inhibitor that can block the viral replication and translation. Structural analysis of target protein and lead compound performed in this study could contribute to the development of potential drug against SARS-CoV-2 infection.

13.
Int J Infect Dis ; 121: 130-137, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35577249

ABSTRACT

OBJECTIVES: Acute respiratory tract infections (ARIs) due to human rhinoviruses (HRVs) are common in pilgrims during the annual Hajj pilgrimage. The objective of this study was to investigate the genetic diversity of HRV among pilgrims with respiratory symptoms during Hajj 2019. METHODS: HRV infection was detected using multiplex real-time reverse transcription polymerase chain reaction. Cycle sequencing was performed on positive samples and the sequences were subjected to phylogenetic analysis. RESULTS: A total of 19 HRV-positive respiratory samples were sequenced. All three serotypes of HRV were identified: HRV-A (13; 68.42%) was more common than HRV-B (2; 10.53%) and HRV-C (4; 21.05%). HRV-A species were found to be of genotypes A101, A21, A30, A57, A23, A60, and A11. HRV-B species belonged to genotypes B4 and B84, and HRV-C species were of genotypes C15, C3, and C56. CONCLUSION: Sequencing studies of respiratory tract viruses in pilgrims are important. We provide preliminary evidence of high diversity of HRV genotypes circulating in pilgrims in a restricted area during Hajj. This requires further clinical and sequencing studies of viral pathogens in larger cohorts of overseas and local pilgrims.


Subject(s)
Respiratory Tract Infections , Rhinovirus , Genetic Variation , Humans , Islam , Phylogeny , Rhinovirus/genetics , Saudi Arabia/epidemiology , Seasons , Travel
14.
Comput Biol Chem ; 98: 107645, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35276575

ABSTRACT

In this paper, a compartmental mathematical model has been utilized to gain a better insight about the future dynamics of COVID-19. The total human population is divided into eight various compartments including susceptible, exposed, pre-asymptomatic, asymptomatic, symptomatic, quarantined, hospitalized and recovered or removed individuals. The problem was modeled in terms of highly nonlinear coupled system of classical order ordinary differential equations (ODEs) which was further generalized with the Atangana-Balaeanu (ABC) fractional derivative in Caputo sense with nonlocal kernel. Furthermore, some theoretical analyses have been done such as boundedness, positivity, existence and uniqueness of the considered. Disease-free and endemic equilibrium points were also assessed. The basic reproduction was calculated through next generation technique. Due to high risk of infection, in the present study, we have considered the reported cases from three continents namely Americas, Europe, and south-east Asia. The reported cases were considered between 1st May 2021 and 31st July 2021 and on the basis of this data, the spread of infection is predicted for the next 200 days. The graphical solution of the considered nonlinear fractional model was obtained via numerical scheme by implementing the MATLAB software. Based on the fitted values of parameters, the basic reproduction number ℜ0 for the case of America, Asia and Europe were calculated as ℜ0≈2.92819, ℜ0≈2.87970 and ℜ0≈2.23507 respectively. It is also observed that the spread of infection in America is comparatively high followed by Asia and Europe. Moreover, the effect of fractional parameter is shown on the dynamics of spread of infection among different classes. Additionally, the effect of quarantined and treatment of infected individuals is also shown graphically. From the present analysis it is observed that awareness of being quarantine and proper treatment can reduce the infection rate dramatically and a minimal variation in quarantine and treatment rates of infected individuals can lead us to decrease the rate of infection.


Subject(s)
COVID-19 , Quarantine , Asia , Basic Reproduction Number , COVID-19/epidemiology , Hospitalization , Humans
15.
Front Cell Infect Microbiol ; 11: 707905, 2021.
Article in English | MEDLINE | ID: mdl-34778101

ABSTRACT

Infectious diseases are the disorders caused by organisms such as bacteria, viruses, fungi, or parasites. Although many of them are permentantly hazardous, a number of them live in and on our bodies and they are normally harmless or even helpful. Under certain circumstances, some organisms may cause diseases and these infectious diseases may be passed directly from person to person or via intermediate vectors including insects and other animals. Dengue virus and Streptococcus pneumoniae are the critical and common sources of infectious diseases. So, it is critical to understand the gene expression profiling and their inferred functions in comparison to the normal and virus infected conditions. Here, we have analyzed the gene expression profiling for dengue hemorrhagic fever, dengue fever, and normal human dataset. Similar to it, streptococcus pneumoniae infectious data were analyzed and both the outcomes were compared. Our study leads to the conclusion that the dengue hemorrhagic fever arises in result to potential change in the gene expression pattern, and the inferred functions obviously belong to the immune system, but also there are some additional potential pathways which are critical signaling pathways. In the case of pneumoniae infection, 19 pathways were enriched, almost all these pathways are associated with the immune system and 17 of the enriched pathways were common with dengue infection except platelet activation and antigen processing and presentation. In terms of the comparative study between dengue virus and Streptococcus pneumoniae infection, we conclude that cell adhesion molecules (CAMs), MAPK signaling pathway, natural killer cell mediated cytotoxicity, regulation of actin cytoskeleton, and cytokine-cytokine receptor interaction are commonly enriched in all the three cases of dengue infection and Streptococcus pneumoniae infection, focal adhesion was enriched between classical dengue fever - dengue hemorrhagic fever, dengue hemorrhagic fever-normal samples, and SP, and antigen processing and presentation and Leukocyte transendothelial migration were enriched in classical dengue fever -normal samples, dengue hemorrhagic fever-normal samples, and Streptococcus pneumoniae infection.


Subject(s)
Dengue , Pneumococcal Infections , Animals , Gene Expression Profiling , Humans , Killer Cells, Natural , Microarray Analysis
16.
Sci Rep ; 11(1): 13659, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211018

ABSTRACT

In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 â—‹C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm-1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.


Subject(s)
Bacterial Proteins/metabolism , Biofuels , Lipase/metabolism , Methanol/metabolism , Micrococcaceae/enzymology , Plant Oils/metabolism , Biocatalysis , Biofuels/analysis , Biofuels/microbiology , Biotechnology/methods , Cooking , Dietary Fats, Unsaturated/metabolism , Micrococcaceae/metabolism
17.
Int J Infect Dis ; 108: 112-115, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004329

ABSTRACT

BACKGROUND: Immunocompromised patients with coronavirus disease 2019 (COVID-19) have prolonged infectious viral shedding for more than 20 days. A test-based approach is suggested for de-isolation of these patients. METHODS: The strategy was evaluated by comparing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load (cycle threshold (Ct) values) and viral culture at the time of hospital discharge in a series of 13 COVID-19 patients: six immunocompetent and seven immunocompromised (five solid organ transplant patients, one lymphoma patient, and one hepatocellular carcinoma patient). RESULTS: Three of the 13 (23%) patients had positive viral cultures: one patient with lymphoma (on day 16) and two immunocompetent patients (on day 7 and day 11). Eighty percent of the patients had negative viral cultures and had a mean Ct value of 20.5. None of the solid organ transplant recipients had positive viral cultures. CONCLUSIONS: The mean Ct value for negative viral cultures was 20.5 in this case series of immunocompromised patients. Unlike those with hematological malignancies, none of the solid organ transplant patients had positive viral cultures. Adopting the test-based approach for all immunocompromised patients may lead to prolonged quarantine. Large-scale studies in disease-specific populations are needed to determine whether a test-based approach versus a symptom-based approach or a combination is applicable for the de-isolation of various immunocompromised patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunocompromised Host , Quarantine , Virus Shedding
18.
Pathogens ; 10(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800223

ABSTRACT

The aim of our study was to define the spectrum of viral infections in pilgrims with acute respiratory tract illnesses presenting to healthcare facilities around the holy places in Makkah, Saudi Arabia during the 2019 Hajj pilgrimage. During the five days of Hajj, a total of 185 pilgrims were enrolled in the study. Nasopharyngeal swabs (NPSs) of 126/185 patients (68.11%) tested positive for one or more respiratory viruses by PCR. Among the 126 pilgrims whose NPS were PCR positive: (a) there were 93/126 (74%) with a single virus infection, (b) 33/126 (26%) with coinfection with more than one virus (up to four viruses): of these, 25/33 cases had coinfection with two viruses; 6/33 were infected with three viruses, while the remaining 2/33 patients had infection with four viruses. Human rhinovirus (HRV) was the most common detected viruses with 53 cases (42.06%), followed by 27 (21.43%) cases of influenza A (H1N1), and 23 (18.25%) cases of influenza A other than H1N1. Twenty-five cases of CoV-229E (19.84%) were detected more than other coronavirus members (5 CoV-OC43 (3.97%), 4 CoV-HKU1 (3.17%), and 1 CoV-NL63 (0.79%)). PIV-3 was detected in 8 cases (6.35%). A single case (0.79%) of PIV-1 and PIV-4 were found. HMPV represented 5 (3.97%), RSV and influenza B 4 (3.17%) for each, and Parechovirus 1 (0.79%). Enterovirus, Bocavirus, and M. pneumoniae were not detected. Whether identification of viral nucleic acid represents nasopharyngeal carriage or specific causal etiology of RTI remains to be defined. Large controlled cohort studies (pre-Hajj, during Hajj, and post-Hajj) are required to define the carriage rates and the specific etiology and causal roles of specific individual viruses or combination of viruses in the pathogenesis of respiratory tract infections in pilgrims participating in the annual Hajj. Studies of the specific microbial etiology of respiratory track infections (RTIs) at mass gathering religious events remain a priority, especially in light of the novel SARS-CoV-2 pandemic.

19.
J King Saud Univ Sci ; 33(3): 101366, 2021 May.
Article in English | MEDLINE | ID: mdl-33613011

ABSTRACT

OBJECTIVE: The new coronavirus disease 2019 (COVID-19) is a major health problem worldwide. The surveillance of seropositive individuals serves as an indicator to the extent of infection spread and provides an estimation of herd immunity status among population. Reports from different countries investigated this issue among healthcare workers (HCWs) who are "at risk" and "sources of risk" for COVID-19. This study aims to investigate the seroprevalence of COVID-19 among HCWs in one of the COVID-19 referral centers in Makkah, Saudi Arabia using three different serological methods. METHODS: In-house developed enzyme-linked immunoassay (ELISA), commercially available electro-chemiluminescence immunoassay (ECLIA), and microneutralization (MN) assay were utilized to determine the seroprevalence rate among the study population. 204 HCWs participated in the study. Both physicians and nurses working in the COVID-19 and non COVID-19 areas were included. Twelve out of 204 were confirmed cases of COVID-19 with variable disease severity. Samples from recovered HCWs were collected four weeks post diagnosis. RESULTS: The overall seroprevalence rate was 6.3% (13 out of 204) using the in-house ELISA and MN assay and it was 5.8% (12 out of 204) using the commercial ECLIA. Among HCWs undiagnosed with COVID-19, the seroprevalence was 2% (4 out 192). Notably, neutralizing antibodies were not detected in 3 (25%) out 12 confirmed cases of COVID-19. CONCLUSIONS: Our study, similar to the recent national multi-center study, showed a low seroprevalence of SARS-Cov-2 antibodies among HCWs. Concordance of results between the commercial electro-chemiluminescence immunoassay (ECLIA), in-house ELISA and MN assay was observed. The in-house ELISA is a promising tool for the serological diagnosis of SARS-CoV-2 infection. However, seroprevalence studies may underestimate the extent of COVID-19 infection as some cases with mild disease did not have detectable antibody responses.

20.
Curr Pharm Des ; 27(32): 3490-3500, 2021.
Article in English | MEDLINE | ID: mdl-33430748

ABSTRACT

BACKGROUND: The unusual pneumonia outbreak that originated in the city of Wuhan, China in December 2019 was found to be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19. METHODS: In this work, we have performed an in silico design and prediction of potential siRNAs based on genetic diversity and recombination patterns, targeting various genes of SARS-CoV-2 for antiviral therapeutics. We performed extensive sequence analysis to analyze the genetic diversity and phylogenetic relationships, and to identify the possible source of virus reservoirs and recombination patterns, and the evolution of the virus as well as we designed the siRNAs which can be used as antivirals against SARS-CoV-2. RESULTS: The sequence analysis and phylogenetic relationships indicated high sequence identity and closed clusters with many types of coronavirus. In our analysis, the full-genome of SARS-CoV-2 showed the highest sequence (nucleotide) identity with SARS-bat-ZC45 (87.7%). The overall sequence identity ranged from 74.3% to 87.7% with selected SARS viruses. The recombination analysis indicated the bat SARS virus is a potential recombinant and serves as a major and minor parent. We have predicted 442 siRNAs and finally selected only 19 functional, and potential siRNAs. CONCLUSION: The siRNAs were predicted and selected based on their greater potency and specificity. The predicted siRNAs need to be validated experimentally for their effective binding and antiviral activity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Computer Simulation , Humans , Phylogeny , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...