Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
MethodsX ; 12: 102592, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445175

ABSTRACT

Since 1958, cell culture media supplemented with fetal bovine serum is used, despite the well-known concerns about animal welfare, reproducibility, reliability, relevance, and safety. To obliterate these concerns and increase scientific accuracy, we recently published an open access, publicly available paper on a defined medium composition to make it possible for any lab to prepare this medium. The medium supports routine culturing and cell banking as well as investigations of growth curves, dose response testing of compounds of cells in 2D and 3D, and cell migration; all important aspects for research and toxicology. Here we give a detailed description of how to mix the defined universal cell culture medium in 14 simple steps to support any entity that wishes to make it. We also list different normal and cancer cell lines that have been cultured in the defined medium.•Open source composition of animal product free universal cell culture medium•Protocols for mixing solutions of small xeno free molecules for supplementation•Protocols for mixing solutions of human proteins for supplementation.

2.
Front Cell Neurosci ; 17: 1178504, 2023.
Article in English | MEDLINE | ID: mdl-37435046

ABSTRACT

Microglia are the resident macrophages of the central nervous system (CNS) and play a key role in CNS development, homeostasis, and disease. Good in vitro models are indispensable to study their cellular biology, and although much progress has been made, in vitro cultures of primary microglia still only partially recapitulate the transcriptome of in vivo microglia. In this study, we explored a combination of in silico and in vitro methodologies to gain insight into cues that are involved in the induction or maintenance of the ex vivo microglia reference transcriptome. First, we used the in silico tool NicheNet to investigate which (CNS-derived) cues could underlie the differences between the transcriptomes of ex vivo and in vitro microglia. Modeling on basis of gene products that were found to be upregulated in vitro, predicted that high mobility group box 2 (HMGB2)- and interleukin (IL)-1ß-associated signaling pathways were driving their expression. Modeling on basis of gene products that were found to be downregulated in vitro, did not lead to predictions on the involvement of specific signaling pathways. This is consistent with the idea that in vivo microenvironmental cues that determine microglial identity are for most part of inhibitory nature. In a second approach, primary microglia were exposed to conditioned medium from different CNS cell types. Conditioned medium from spheres composed of microglia, oligodendrocytes, and radial glia, increased the mRNA expression levels of the microglia signature gene P2RY12. NicheNet analyses of ligands expressed by oligodendrocytes and radial glia predicted transforming growth factor beta 3 (TGF-ß3) and LAMA2 as drivers of microglia signature gene expression. In a third approach, we exposed microglia to TGF-ß3 and laminin. In vitro exposure to TGF-ß3 increased the mRNA expression levels of the microglia signature gene TREM2. Microglia cultured on laminin-coated substrates were characterized by reduced mRNA expression levels of extracellular matrix-associated genes MMP3 and MMP7, and by increased mRNA expression levels of the microglia signature genes GPR34 and P2RY13. Together, our results suggest to explore inhibition of HMGB2- and IL-1ß-associated pathways in in vitro microglia. In addition, exposure to TGF-ß3 and cultivation on laminin-coated substrates are suggested as potential improvements to current in vitro microglia culture protocols.

4.
Front Immunol ; 13: 967951, 2022.
Article in English | MEDLINE | ID: mdl-36203578

ABSTRACT

TLR-induced signaling initiates inflammatory responses in cells of the innate immune system. These responses are amongst others characterized by the secretion of high levels of pro-inflammatory cytokines, which are tightly regulated and adapted to the microenvironment. Purinergic receptors are powerful modulators of TLR-induced responses, and we here characterized the effects of P2Y6 receptor (P2RY6)-mediated signaling on TLR responses of rhesus macaque primary bone marrow-derived macrophages (BMDM) and microglia, using the selective P2RY6 antagonist MRS2578. We demonstrate that P2RY6-mediated signaling enhances the levels of TLR-induced pro-inflammatory cytokines in microglia in particular. TLR1, 2, 4, 5 and 8-induced responses were all enhanced in microglia, whereas such effects were much less pronounced in BMDM from the same donors. Transcriptome analysis revealed that the overall contribution of P2RY6-mediated signaling to TLR-induced responses in microglia leads to an amplification of pro-inflammatory responses. Detailed target gene analysis predicts that P2RY6-mediated signaling regulates the expression of these genes via modulation of the activity of transcription factors NFAT, IRF and NF-κB. Interestingly, we found that the expression levels of heat shock proteins were strongly induced by inhibition of P2RY6-mediated signaling, both under homeostatic conditions as well as after TLR engagement. Together, our results shed new lights on the specific pro-inflammatory contribution of P2RY6-mediated signaling in neuroinflammation, which might open novel avenues to control brain inflammatory responses.


Subject(s)
Microglia , NF-kappa B , Animals , Cytokines/metabolism , Heat-Shock Proteins/metabolism , Macaca mulatta , NF-kappa B/metabolism , Receptors, Purinergic P2 , Toll-Like Receptor 1/metabolism
5.
Front Bioeng Biotechnol ; 10: 926642, 2022.
Article in English | MEDLINE | ID: mdl-35979173

ABSTRACT

Microglia are the resident macrophages of the central nervous system and contribute to maintaining brain's homeostasis. Current 2D "petri-dish" in vitro cell culturing platforms employed for microglia, are unrepresentative of the softness or topography of native brain tissue. This often contributes to changes in microglial morphology, exhibiting an amoeboid phenotype that considerably differs from the homeostatic ramified phenotype in healthy brain tissue. To overcome this problem, multi-scale engineered polymeric microenvironments are developed and tested for the first time with primary microglia derived from adult rhesus macaques. In particular, biomimetic 2.5D micro- and nano-pillar arrays (diameters = 0.29-1.06 µm), featuring low effective shear moduli (0.25-14.63 MPa), and 3D micro-cages (volume = 24 × 24 × 24 to 49 × 49 × 49 µm3) with and without micro- and nano-pillar decorations (pillar diameters = 0.24-1 µm) were fabricated using two-photon polymerization (2PP). Compared to microglia cultured on flat substrates, cells growing on the pillar arrays exhibit an increased expression of the ramified phenotype and a higher number of primary branches per ramified cell. The interaction between the cells and the micro-pillar-decorated cages enables a more homogenous 3D cell colonization compared to the undecorated ones. The results pave the way for the development of improved primary microglia in vitro models to study these cells in both healthy and diseased conditions.

6.
Glia ; 70(4): 728-747, 2022 04.
Article in English | MEDLINE | ID: mdl-34961968

ABSTRACT

Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-ß as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-ß has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.


Subject(s)
Ependymoglial Cells , Microglia , Animals , Cues , Gene Expression Profiling , Macaca mulatta , Oligodendroglia , Transcriptome
7.
ALTEX ; 39(1): 140-148, 2022.
Article in English | MEDLINE | ID: mdl-34654933

ABSTRACT

The in vivo histamine sensitization test (HIST) has historically been performed to guarantee the safety of acellular per­tussis vaccine batches. Non-compliance of batches is primarily associated with the presence of low levels of pertussis toxin (PTx). Because of ethical, standardization and scientific reasons, a variety of alternative in vitro approaches have been studied to replace the lethal HIST. A broadly applied and partially accepted method is the CHO cell clustering test, which is based on the clustered growth pattern of CHO cells when exposed to minute amounts of PTx. One of the major hurdles for global application of the CHO clustering test is the manual assessment of the clusters, which is associated with suboptimal reproducibility of test outcomes and is time-consuming. Here, various parameters of CHO cell nuclei were evaluated in search for a reliable, objective read-out parameter. We demonstrate that the distance between each nucleus and its nearest neighbor (3N method) is the most suitable parameter to assess clustered cell growth. This method detects 2.8 mIU PTx/mL and thereby complies with the requirement set for the sensitivity of the CHO clustering test based on visual reading. In commercial acellular pertussis vaccines spiked with PTx, the method detects 45 mIU/mL PTx, which is substantially lower than the 181-725 mIU/mL PTx detected by visual interpretation. The 3N method thus allows objective and sensitive assessment of CHO clustering and thereby encourages broad and global implementation of the in vitro test as an alternative to the HIST.


Subject(s)
Animal Testing Alternatives , Cell Nucleus , Animals , Cluster Analysis , Cricetinae , Cricetulus , Pertussis Toxin , Reproducibility of Results , Vaccines, Acellular
8.
Front Immunol ; 12: 771453, 2021.
Article in English | MEDLINE | ID: mdl-34880868

ABSTRACT

Interleukin (IL)-4 is a cytokine that affects both adaptive and innate immune responses. In the central nervous system, microglia express IL-4 receptors and it has been described that IL-4-exposed microglia acquire anti-inflammatory properties. We here demonstrate that IL-4 exposure induces changes in the cell surface protein expression profile of primary rhesus macaque microglia and enhances their potential to induce proliferation of T cells with a regulatory signature. Moreover, we show that Toll like receptor (TLR)-induced cytokine production is broadly impaired in IL-4-exposed microglia at the transcriptional level. IL-4 type 2 receptor-mediated signaling is shown to be crucial for the inhibition of microglial innate immune responses. TLR-induced nuclear translocalization of NF-κB appeared intact, and we found no evidence for epigenetic modulation of target genes. By contrast, nuclear extracts from IL-4-exposed microglia contained significantly less NF-κB capable of binding to its DNA consensus site. Further identification of the molecular mechanisms that underlie the inhibition of TLR-induced responses in IL-4-exposed microglia may aid the design of strategies that aim to modulate innate immune responses in the brain, for example in gliomas.


Subject(s)
Cytokines/immunology , Microglia/immunology , NF-kappa B/immunology , Toll-Like Receptors/immunology , Animals , Cell Proliferation , Cells, Cultured , Female , Histone Deacetylases/genetics , Lipopolysaccharides/pharmacology , Macaca mulatta , Male , T-Lymphocytes/immunology , Transcription, Genetic
9.
Lab Invest ; 101(11): 1513-1522, 2021 11.
Article in English | MEDLINE | ID: mdl-34376778

ABSTRACT

Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E. coli), purified and formulated with incomplete Freund's adjuvant (IFA), which lacks bacterial elements. Here, we provide evidence indicating how trace amounts of bacterial contaminants within rhMOG may influence the course and severity of EAE in the cynomolgus macaque immunized with rhMOG/IFA. The residual amount of E. coli contaminants, as detected with mass spectrometry within rhMOG protein stocks, were found to significantly modulate the severity of clinical, radiological, and histologic hallmarks of EAE in macaques. Indeed, animals receiving the purest rhMOG showed milder disease severity, increased numbers of remissions, and reduced brain damage. Histologically, these animals presented a wider diversity of lesion types, including changes in normal-appearing white matter and prephagocytic lesions. Non-human primates EAE model with milder histologic lesions reflect more accurately ADD and permits to study of the pathogenesis of disease initiation and progression.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/etiology , Myelin-Oligodendrocyte Glycoprotein/isolation & purification , Animals , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Escherichia coli , Female , Immunity, Innate , Macaca fascicularis , Male , Recombinant Proteins/isolation & purification , Spinal Cord/pathology
10.
Front Immunol ; 12: 685218, 2021.
Article in English | MEDLINE | ID: mdl-34093588

ABSTRACT

Despite decades of clinical and preclinical investigations, we still poorly grasp our innate immune response to human adenoviruses (HAdVs) and their vectors. In this study, we explored the impact of lactoferrin on three HAdV types that are being used as vectors for vaccines. Lactoferrin is a secreted globular glycoprotein that influences direct and indirect innate immune response against a range of pathogens following a breach in tissue homeostasis. The mechanism by which lactoferrin complexes increases HAdV uptake and induce maturation of human phagocytes is unknown. We show that lactoferrin redirects HAdV types from species B, C, and D to Toll-like receptor 4 (TLR4) cell surface complexes. TLR4-mediated internalization of the HAdV-lactoferrin complex induced an NLRP3-associated response that consisted of cytokine release and transient disruption of plasma membrane integrity, without causing cell death. These data impact our understanding of HAdV immunogenicity and may provide ways to increase the efficacy of HAdV-based vectors/vaccines.


Subject(s)
Adenoviruses, Human/immunology , Lactoferrin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytes/virology , Toll-Like Receptor 4/metabolism , Adenoviridae Infections/immunology , Adenoviridae Infections/pathology , Adenoviruses, Human/genetics , Cytokines/metabolism , Flow Cytometry , Humans , Immunity, Innate , Lactoferrin/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/genetics
11.
Br J Clin Pharmacol ; 85(7): 1418-1426, 2019 07.
Article in English | MEDLINE | ID: mdl-30920013

ABSTRACT

Drug safety is an important issue, especially in the experimental phases of development. Adverse immunostimulation (AI) is sometimes encountered following treatment with biopharmaceuticals, which can be life-threatening if it results in a severe systemic inflammatory reaction. Biopharmaceuticals that unexpectedly induce an inflammatory response still enter the clinic, even while meeting all regulatory requirements. Impurities (of microbial origin) in biopharmaceuticals are an often-overlooked cause of AI. This demonstrates that the current guidelines for quality control and safety pharmacology testing are not flawless. Here, based on two case examples, several shortcomings of the guidelines are discussed. The most important of these are the lack of sensitivity for impurities, lack of testing for pyrogens other than endotoxin, and the use of insensitive animal species and biomarkers in preclinical investigations. Moreover, testing for the immunotoxicity of biopharmaceuticals is explicitly not recommended by the international guidelines. Publication of cases of AI is pivotal, both to increase awareness and to facilitate scientific discussions on how to prevent AI in the future.


Subject(s)
Biological Products/adverse effects , Drug Contamination , Immunomodulation/drug effects , Animals , Biological Products/immunology , Biological Products/standards , Endotoxins/isolation & purification , Guidelines as Topic , Humans , Pyrogens/isolation & purification , Quality Control
12.
J Immunol ; 202(8): 2421-2430, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30804043

ABSTRACT

TLR-induced signaling potently activates cells of the innate immune system and is subject to regulation at different levels. Inflammatory conditions are associated with increased levels of extracellular adenosine, which can modulate TLR-induced production of cytokines through adenosine receptor-mediated signaling. There are four adenosine receptor subtypes that induce different signaling cascades. In this study, we demonstrate a pivotal contribution of adenosine A3 receptor (A3R)-mediated signaling to the TLR4-induced expression of IL-12 in different types of human myeloid APC. In dendritic cells, IL-12 and CCL2 responses as evoked by TLR2, 3, 4, 5, and 8, as well as IL-12 responses evoked by whole pathogens, were all reduced when A3R-mediated signaling was blocked. As a result, concomitant production of IFN-γ and IL-17 by T cells was significantly inhibited. We further show that selective inhibition of A3R-mediated signaling reduced TLR-induced phosphorylation of the transcription factor STAT1 at tyrosine 701. Next-generation sequencing revealed that A3R-mediated signaling controls the expression of metallothioneins, known inhibitors of STAT1 phosphorylation. Together our results reveal a novel regulatory layer of innate immune responses, with a central role for metallothioneins and autocrine/paracrine signaling via A3Rs.


Subject(s)
Antigen-Presenting Cells/immunology , Chemokine CCL2/immunology , Interleukin-12/immunology , Myeloid Cells/immunology , Receptor, Adenosine A3/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Antigen-Presenting Cells/cytology , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Myeloid Cells/cytology , THP-1 Cells
13.
Glia ; 66(12): 2645-2658, 2018 12.
Article in English | MEDLINE | ID: mdl-30306644

ABSTRACT

V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator (NCR) involved in inhibition of T cell-mediated immunity. Expression changes of other NCRs (PD-1, PD-L1/L2, CTLA-4) during inflammation of the central nervous system (CNS) were previously demonstrated, but VISTA expression in the CNS has not yet been explored. Here, we report that in the human and mouse CNS, VISTA is most abundantly expressed by microglia, and to lower levels by endothelial cells. Upon TLR stimulation, VISTA expression was reduced in primary neonatal mouse and adult rhesus macaque microglia in vitro. In mice, microglial VISTA expression was reduced after lipopolysaccharide (LPS) injection, during experimental autoimmune encephalomyelitis (EAE), and in the accelerated aging Ercc1 Δ/- mouse model. After LPS injection, decreased VISTA expression in mouse microglia was accompanied by decreased acetylation of lysine residue 27 in histone 3 in both its promoter and enhancer region. ATAC-sequencing indicated a potential regulation of VISTA expression by Pu.1 and Mafb, two transcription factors crucial for microglia function. Finally, our data suggested that VISTA expression was decreased in microglia in multiple sclerosis lesion tissue, whereas it was increased in Alzheimer's disease patients. This study is the first to demonstrate that in the CNS, VISTA is expressed by microglia, and that VISTA is differentially expressed in CNS pathologies.


Subject(s)
Central Nervous System Diseases/complications , Inflammation/etiology , Inflammation/pathology , Membrane Proteins/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Animals, Newborn , Brain/pathology , Calcium-Binding Proteins , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Endonucleases/genetics , Endonucleases/metabolism , Female , Freund's Adjuvant/toxicity , Gene Expression/physiology , Humans , Lipopolysaccharides/pharmacology , Macaca mulatta , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Microglia/drug effects , Myelin-Oligodendrocyte Glycoprotein/toxicity , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Peptide Fragments/toxicity
14.
Front Cell Neurosci ; 12: 242, 2018.
Article in English | MEDLINE | ID: mdl-30127723

ABSTRACT

Neuroinflammation is a common feature in neurodegenerative diseases and strategies to modulate neuroinflammatory processes are increasingly considered as therapeutic options. In such strategies, glia cells rather than neurons represent the cellular targets. Microglia, the resident macrophages of the central nervous system, are principal players in neuroinflammation and detailed cellular biological knowledge of this particular cell type is therefore of pivotal importance. The last decade has shed new light on the origin, characteristics and functions of microglia, underlining the need for specific in vitro methodology to study these cells in detail. In this review we provide a comprehensive overview of existing methodology such as cell lines, stem cell-derived microglia and primary dissociated cell cultures, as well as discuss recent developments. As there is no in vitro method available yet that recapitulates all hallmarks of adult homeostatic microglia, we also discuss the advantages and limitations of existing models across different species.

15.
J Neuroinflammation ; 15(1): 218, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30071854

ABSTRACT

BACKGROUND: Means to promote endogenous remyelination in multiple sclerosis (MS) benefit from insights into the role of inhibitory molecules that preclude remyelination. Fibronectin assembles into aggregates in MS, which impair oligodendrocyte differentiation and remyelination. Microglia and macrophages are required for complete remyelination and normally switch from a pro-inflammatory classical phenotype upon demyelination to a supportive alternative phenotype during remyelination. Here, we investigated the role of fibronectin aggregates in modulating microglia and macrophage behavior and phenotypes. METHODS: Bone marrow-derived macrophages and microglia from newborn rats were exposed to (a) plasma fibronectin coatings; (b) coatings of deoxycholate-insoluble fibronectin aggregates; (c) interferon-γ (IFNγ) treatment, as an inducer of the pro-inflammatory classically activated phenotype; (d) interleukin-4 (IL-4) treatment, to promote the pro-regenerative anti-inflammatory alternatively activated phenotype; or (e) left unstimulated on uncoated plastic. To examine the in vitro effects of the different stimulations on cell behavior and phenotype, proliferation, phagocytosis, morphology, and pro- and anti-inflammatory features were assessed. RESULTS: In line with a classically activated phenotype, exposure of microglia and macrophages to both plasma fibronectin and fibronectin aggregates induced an amoeboid morphology and stimulated phagocytosis by macrophages. Furthermore, as observed upon IFNγ treatment, coatings of aggregated, but not plasma fibronectin, promoted nitric oxide release by microglia and macrophages. Remarkably, fibronectin aggregates induced nitric oxide release in an integrin-independent manner. In addition, fibronectin aggregates, but not plasma fibronectin, increased the expression of arginase-1, similarly as observed upon treatment with IL-4. Proteomic analysis revealed that aggregates of fibronectin act as a scaffold for other proteins, including Hsp70 and thrombospondin-1, which may clarify the induction of both pro-inflammatory and anti-inflammatory features in macrophages cultured on fibronectin aggregate, but not plasma fibronectin coatings. CONCLUSIONS: Macrophages and microglia grown on aggregated fibronectin coatings adopt a distinct phenotype compared to plasma fibronectin coatings, showing pro-inflammatory and anti-inflammatory features. Therefore, the pathological fibronectin aggregates in MS lesions may impair remyelination by promoting and/or retaining several classically activated phenotypic features in microglia and macrophages.


Subject(s)
Brain/metabolism , Cytokines/metabolism , Fibronectins/metabolism , Macrophages/metabolism , Multiple Sclerosis/pathology , Protein Aggregates/physiology , Aldehyde Dehydrogenase/metabolism , Animals , Animals, Newborn , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/pharmacology , Female , Humans , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Male , Neuroglia/drug effects , Neuroglia/metabolism , Phagocytosis/drug effects , Rats , Rats, Wistar
16.
Vaccine ; 35(24): 3249-3255, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28479181

ABSTRACT

Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5µg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity.


Subject(s)
Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/chemistry , Esters/adverse effects , Esters/immunology , Immunity, Humoral , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemical synthesis , Animals , Antibodies, Viral/blood , Body Temperature , Carbohydrates/administration & dosage , Carbohydrates/adverse effects , Carbohydrates/chemistry , Carbohydrates/immunology , Drug Compounding , Esters/administration & dosage , Esters/chemistry , Fatty Acids/administration & dosage , Fatty Acids/adverse effects , Fatty Acids/chemistry , Fatty Acids/immunology , Ferrets/immunology , HEK293 Cells , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/prevention & control , Injections, Intramuscular , Lipid A/analogs & derivatives , Lipid A/chemistry , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Polysorbates/administration & dosage , Rabbits , Squalene/administration & dosage , Squalene/immunology , Toll-Like Receptor 4/immunology , Vaccination
17.
Glia ; 64(12): 2231-2246, 2016 12.
Article in English | MEDLINE | ID: mdl-27641912

ABSTRACT

Under stressful conditions nucleotides are released from dying cells into the extracellular space, where they can bind to purinergic P2X and P2Y receptors. High concentrations of extracellular ATP in particular induce P2X7-mediated signaling, which leads to inflammasome activation. This in turn leads to the processing and secretion of pro-inflammatory cytokines, like interleukin (IL)-1ß. During neurodegenerative diseases, innate immune responses are shaped by microglia and we have previously identified microglia-specific features of inflammasome-mediated responses. Here, we compared ATP-induced IL-1ß secretion in primary rhesus macaque microglia and bone marrow-derived macrophages (BMDM). We assessed the full expression profile of P2 receptors and characterized the induction and modulation of IL-1ß secretion by extracellular nucleotides. Microglia secreted significantly lower levels of IL-1ß in response to ATP when compared to BMDM. We demonstrate that this is not due to differences in sensitivity, kinetics or expression of ATP-processing enzymes, but rather to differences in purinergic receptor expression levels and usage. Using a combined approach of purinergic receptor agonists and antagonists, we demonstrate that ATP-induced IL-1ß secretion in BMDM was fully dependent on P2X7 signaling, whereas in microglia multiple purinergic receptors were involved, including P2X7 and P2X4. These cell type-specific features of conserved innate immune responses may reflect adaptations to the vulnerable CNS microenvironment. GLIA 2016;64:2231-2246.


Subject(s)
Adenosine Triphosphate/pharmacology , Interleukin-1beta/metabolism , Macrophages/drug effects , Macrophages/metabolism , Microglia/drug effects , Microglia/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Interleukin-6/metabolism , Lipopolysaccharide Receptors/metabolism , Macaca mulatta , Male , Polysaccharides/pharmacology , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , RNA, Messenger/metabolism , Receptors, Purinergic P2X/genetics , Receptors, Purinergic P2X/metabolism
18.
J Neuroinflammation ; 13(1): 138, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27266875

ABSTRACT

BACKGROUND: Interleukin (IL)-1ß is a pro-inflammatory cytokine that plays a role in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Yet, detailed studies on IL-1ß expression in different stages of MS lesion development and a comparison of IL-1ß expression in MS and EAE are lacking. METHODS: Here, we performed an extensive characterization of IL-1ß expression in brain tissue of MS patients, which included different MS lesion types, and in brain tissue of rhesus macaques with EAE. RESULTS: In rhesus EAE brain tissue, we observed prominent IL-1ß staining in MHC class II(+) cells within perivascular infiltrates and at the edges of large demyelinating lesions. Surprisingly, staining was localized to resident microglia or differentiated macrophages rather than to infiltrating monocytes, suggesting that IL-1ß expression is induced within the central nervous system (CNS). By contrast, IL-1ß staining in MS brain tissue was much less pronounced. Staining was found in the parenchyma of active and chronic active MS lesions and in nodules of MHC class II(+) microglia in otherwise normal appearing white matter. IL-1ß expression was detected in a minority of the nodules only, which could not be distinguished by the expression of pro- and anti-inflammatory markers. These nodules were exclusively found in MS, and it remains to be determined whether IL-1ß(+) nodules are destined to progress into active lesions or whether they merely reflect a transient response to cellular stress. CONCLUSIONS: Although the exact localization and relative intensity of IL-1ß expression in EAE and MS is different, the staining pattern in both neuroinflammatory disorders is most consistent with the idea that the expression of IL-1ß during lesion development is induced in the tissue rather than in the periphery.


Subject(s)
Central Nervous System/metabolism , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Interleukin-1beta/genetics , Multiple Sclerosis/pathology , Adult , Aged , Aged, 80 and over , Animals , Calcium-Binding Proteins , Calgranulin B/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Female , Humans , Interleukin-1beta/metabolism , Macaca mulatta , Male , Microfilament Proteins , Microglia/metabolism , Microglia/pathology , Middle Aged , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism
19.
J Neurosci ; 35(2): 678-87, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25589762

ABSTRACT

Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1ß (IL-1ß). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1ß expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1ß secretion by hematopoietic macrophages, microglial secretion of IL-1ß is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.


Subject(s)
Caspases/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Animals , Caspases/genetics , Cells, Cultured , Female , Interleukin-1beta/genetics , Kinetics , Macaca mulatta , Macrophages/metabolism , Male , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Reaction Time
20.
ALTEX ; 31(4): 520-9, 2014.
Article in English | MEDLINE | ID: mdl-25058455

ABSTRACT

The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.


Subject(s)
Animal Testing Alternatives/legislation & jurisprudence , Animal Testing Alternatives/methods , Primates , Research Design , Animal Experimentation/ethics , Animal Experimentation/legislation & jurisprudence , Animal Husbandry , Animal Welfare , Animals , Biological Specimen Banks , Housing, Animal , Neurosciences , Public Policy , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...